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Abstract

In this talk, we show the following fixed point theorem on partial random-

ness, from the point of view of algorithmic randomness.

Theorem [fixed point theorem on partial randomness]

For every T ∈ (0,1), if Ω(T ) is a computable real number, then

(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T -random and T -compressible,

(iii) lim
n→∞

H(T ¹ n)

n
= T . ⇒ The compression rate of T equals to T .

After that, we introduce variants of this theorem, and investigate their

properties and relation.
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Preliminaries: Program-size Complexity

• {0,1}∗ := {λ,0,1,00,01,10,11,000, . . . }. The set of finite binary strings.
• For any s ∈ {0,1}∗, |s| denotes the length of s.
• Let V ⊂ {0,1}∗. We say V is prefix-free if for any distinct s and t ∈ V , s
is not a prefix of t.

For example {0,10}: prefix-free {0,01}: not prefix-free

Let U be a universal self-delimiting Turing machine.
DomU , i.e., the domain of definition of U , is a prefix-free set.

Definition The program-size complexity (or Kolmogorov complexity) H(s)

of s ∈ {0,1}∗ is defined by

H(s) := min
{
|p|

∣∣∣ p ∈ {0,1}∗ & U(p) = s
}

.

H(s): The length of the shortest input for the universal self-delimiting Tur-
ing machine U to output s. ⇒ H(s): The degree of randomness of s.
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Preliminaries: Randomness of Real Number

Definition For any α ∈ R and n ∈ N+, we denote by α ¹ n the first n bits

of the base-two expansion of α − bαc, i.e., the fractional part of α.

Definition [weak Chaitin randomness, Chaitin 1975]

We say α ∈ R is weakly Chaitin random if n ≤ H(α ¹ n) + O(1),

i.e., any prefix of the base-two expansion of α cannot be compressed by H.

This notion is equivalent to Martin-Löf randomness (Schnorr).

Definition [Chaitin’s halting probability Ω, Chaitin 1975]

Ω :=
∑

p∈DomU

2−|p|.

Theorem [Chaitin 1975] Ω is weakly Chaitin random.
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Preliminaries: Partial Randomness of Real Number

The partial randomness (degree of randomness) of a real number can be
characterized by a real number.

Definition [weak Chaitin T -randomness, Tadaki 2002] Let T ∈ [0,1].

We say α ∈ R is weakly Chaitin T -random if Tn ≤ H(α ¹ n) + O(1).

In the case of T = 1, the weak Chaitin T -randomness results in the weak
Chaitin randomness.

Definition [T -compressibility] Let T ∈ [0,1].

We say α ∈ R is T -compressible if H(α ¹ n) ≤ Tn + o(n),

which is equivalent to lim sup
n→∞

H(α ¹ n)

n
≤ T .

Remark If α ∈ R is weakly Chaitin T -random and T -compressible, then

lim
n→∞

H(α ¹ n)

n
= T.

The compression rate of α by program-size complexity equals to T .
〈The converse does not necessarily hold.〉
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Preliminaries: Generalization of Ω

Definition [generalization of Chaitin’s Ω, Tadaki 1999]

Ω(T ) :=
∑

p∈DomU

2−
|p|
T (T > 0).

Ω(1) = Ω.

Theorem [Tadaki 1999] Let T ∈ R.

(i) If 0 < T ≤ 1 and T is computable, then Ω(T ) is weakly Chaitin T -random

and T -compressible. ⇒ The compression rate of Ω(T ) equals to T .

(ii) If 1 < T , then Ω(T ) diverges to ∞.

Here, T is called computable if the mapping N+ 3 n 7→ T ¹ n is a total

recursive function.

6



Fixed Point Theorem on Partial Randomness

Theorem [fixed point theorem on partial randomness, Tadaki, CiE 2008]

For every T ∈ (0,1), if Ω(T ) is a computable real number, then

(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T -random and T -compressible,

(iii) lim
n→∞

H(T ¹ n)

n
= T . ⇒ The compression rate of T equals to T itself.

Here, a real α is called right-computable if the set { r ∈ Q | α < r } is r.e.,

and α is called left-computable if −α is right-computable.
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Fixed Point Theorem on Partial Randomness: Proof

Proof of Fixed Point Theorem

Theorem [fixed point theorem on partial randomness,] [posted again]

For every T ∈ (0,1), if Ω(T ) is a computable real number, then

(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T -random and T -compressible,

(iii) lim
n→∞

H(T ¹ n)

n
= T .

Lemma [upper bound I ] For every T ∈ (0,1), if Ω(T ) is right-computable

then T is also right-computable.

Lemma [upper bound II ] For every T ∈ (0,1), if Ω(T ) is left-computable

and T is right-computable, then T is T -compressible.

Lemma [lower bound] For every T ∈ (0,1), if Ω(T ) is right-computable

then T is weakly Chaitin T -random.
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Proofs of the three lemmas

Lemma [upper bound I ] For every T ∈ (0,1), if Ω(T ) is right-computable

then T is also right-computable.

Proof) For each k ∈ N+ and x ∈ (0,1), let ωk(x) =
∑k

i=1 2−|pi|/x, where

p1, p2, p3, . . . . . . is a particular recursive enumeration of DomU .

Then we see that, for every r ∈ Q ∩ (0,1), T < r if and only if there exists

k ∈ N+ such that Ω(T ) < ωk(r). This is because Ω(x) is an increasing

function of x ∈ (0,1] and limk→∞ ωk(r) = Ω(r).

Since Ω(T ) is right-computable,

the set { r ∈ Q ∩ (0,1) | ∃ k ∈ N+ Ω(T ) < ωk(r) } is r.e. and therefore

the set { r ∈ Q ∩ (0,1) | T < r } is also r.e.

Lemma [upper bound II ] For every T ∈ (0,1), if Ω(T ) is left-computable

and T is right-computable, then T is T -compressible.

Proof) Omitted.
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Lemma [lower bound] For every T ∈ (0,1), if Ω(T ) is right-computable

then T is weakly Chaitin T -random.

Proof) The following procedure calculates a partial recursive function

Ψ: {0,1}∗ → {0,1}∗ such that Tn − Tc < H(Ψ(T ¹ n)). The lemma fol-

lows from H(Ψ(T ¹ n)) ≤ H(T ¹ n) + O(1). Let ωk(x) =
∑k

i=1 2−|pi|/x.

Procedure: Given T ¹ n, one can effectively find k0 which satisfies

Ω(T ) < ωk0
(0.(T ¹ n) + 2−n).

This is possible because Ω(x) is an increasing function of x, limk→∞ ωk(r) =

Ω(r) for every r ∈ Q ∩ (0,1), and Ω(T ) is right-computable. It follows that

∞∑
i=k0+1

2−|pi|
T = Ω(T ) − ωk0

(T ) < ωk0
(0.(T ¹ n) + 2−n) − ωk0

(T )< 2c−n.

Hence, for every i > k0, 2−|pi|
T < 2c−n and therefore Tn − Tc < |pi|. Thus,

by calculating the set { U(pi) | i ≤ k0 } and picking any one finite binary

string s which is not in this set, one can then obtain s ∈ {0,1}∗ such that

Tn − Tc < H(s).
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Remark on the sufficient condition in the fixed Point Theorem

Theorem [fixed point theorem on partial randomness] [posted again]

For every T ∈ (0,1), if Ω(T ) is computable then T is weakly Chaitin T -
random and T -compressible.

Note that Ω(x) is a strictly increasing continuous function of x ∈ (0,1), and
the set of all computable real numbers is dense in R. Thus,

Theorem The set {T ∈ (0,1) | Ω(T ) is computable } is dense in (0,1).

Corollary [density of the fixed points]

The set {T ∈ (0,1) | T is weakly Chaitin T -random and T -compressible} is
dense in (0,1).

At this point, the following question would arise naturally:

Question Is this sufficient condition, i.e., the computability of Ω(T ),

also necessary for T to be a fixed point ?

Answer Completely not !! (as we can see through the following

argument)
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Thermodynamic Quantities in AIT: Definition

The thermodynamic quantities in AIT (algorithmic information theory) is
introduced in the following manner.

Definition Let q1, q2, q3, . . . . . . be an arbitrary enumeration of DomU .

Note that the results of this talk are independent of the choice of {qi}.

Definition [thermodynamic quantities in AIT, Tadaki, CiE 2008] Let T > 0.

(i) Partition Function: Z(T ) := lim
k→∞

Zk(T ), where Zk(T ) =
k∑

i=1

2−|qi|
T .

(ii) Free Energy: F (T ) := lim
k→∞

Fk(T ), where Fk(T ) = −T log2 Zk(T ).

(ii) Energy: E(T ) := lim
k→∞

Ek(T ), where Ek(T ) =
1

Zk(T )

k∑
i=1

|qi|2−|qi|
T .

(iii) Entropy: S(T ) := lim
k→∞

Sk(T ), where Sk(T ) =
Ek(T ) − Fk(T )

T
.

Remark (i) Z(T ) = Ω(T ). (ii) The real T corresponds to “temperature”.
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Thermodynamic Quantities in AIT: Properties

The thermodynamic quantities F (T ), E(T ), and S(T ) has the almost same
randomness properties as Ω(T ), i.e., Z(T ).

Theorem [free energy F (T )] Let T ∈ R.

(i) If 0 < T ≤ 1 and T is computable, then F (T ) converges to a real number
which is weakly Chaitin T -random and T -compressible. (same as for Ω(T ))
(ii) If 1 < T , then F (T ) diverges to −∞.

Definition We say α ∈ R is Chaitin T -random if limn→∞ H(α ¹ n)−Tn = ∞.

Theorem [energy E(T )] Let T ∈ R.

(i) If 0 < T < 1 and T is computable, then E(T ) converges to a real number
which is Chaitin T -random and T -compressible.
(ii) If 1 ≤ T , then E(T ) diverges to ∞.

Theorem [entropy S(T )] Let T ∈ R.

(i) If 0 < T < 1 and T is computable, then S(T ) converges to a real number
which is Chaitin T -random and T -compressible.
(ii) If 1 ≤ T , then S(T ) diverges to ∞.
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Thermodynamic Quantities in AIT: Fixed Point Theorems

In the fixed point theorem, Ω(T ) can be replaced by each of the thermo-
dynamic quantities F (T ), E(T ), and S(T ).

Theorem [fixed point theorem by the free energy F (T )]

For every T ∈ (0,1), if F (T ) is computable, then

(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T -random and T -compressible.

This theorem has the exactly same form as for Ω(T ).

Theorem [fixed point theorem by the energy E(T )]

For every T ∈ (0,1), if E(T ) is computable, then

(i) T is right-computable and not left-computable,

(ii) T is Chaitin T -random and T -compressible.

Theorem [fixed point theorem by the entropy S(T )]

For every T ∈ (0,1), if S(T ) is computable, then

(i) T is right-computable and not left-computable,

(ii) T is Chaitin T -random and T -compressible.
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Proof of the fixed point theorem by free energy F (T )

Theorem [general form of fixed point theorem] Let f : (0,1) → R. Sup-

pose that f is a strictly increasing function and there is g : (0,1) × N+ → R
which satisfies the following conditions:

(i) ∀ T ∈ (0,1) limk→∞ g(T, k) = f(T ).

(ii) The mapping Q × (Q ∩ (0,1)) 3 (r, k) 7→ g(r, k) is computable.

(iii) ∀ T ∈ (0,1) ∃ k0 ∈ N+ ∃ a, b ∈ N ∀ k ≥ k0

2−
|pk+1|

T −a ≤ g(T, k + 1) − g(T, k) ≤ 2−|pk+1|
T +b.

(iv) ∀ T ∈ (0,1) ∃ t ∈ (T,1) ∃ k0 ∈ N+ ∃ c, d ∈ N ∀ k ≥ k0 ∀ x ∈ (T, t)

2−c(x − T ) ≤ g(x, k) − g(T, k) ≤ 2d(x − T ).

(v) ∀ t1, t2 ∈ (0,1) with t1 < t2 ∃ k0 ∈ N+ ∀ k ≥ k0 ∀ x ∈ [t1, t2] g(x, k) ≤ f(x).

(vi) ∀ k ∈ N+ ∀ T ∈ (0,1) limx→T+0 g(x, k) = g(T, k).

Then, for every T ∈ (0,1), if f(T ) is computable, then T is weakly Chaitin

T -random and T -compressible.
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Proof of the fixed point theorem by free energy F (T )

Theorem [fixed point theorem by free energy F (T )] [posted again]

For every T ∈ (0,1), if F (T ) is a computable real number, then T is weakly

Chaitin T -random and T -compressible.

A portion of the proof :

Using the mean value theorem and the lemma below,

Sk(T )(x − T ) ≤ Fk(T ) − Fk(x) ≤ Sk(t)(x − T )

for every k ∈ N+ and every T, x, t ∈ (0,1) with T < x < t. On the other

hand, for every T ∈ (0,1), there exists k0 ∈ N+ such that, for every k ≥ k0,

0 < Sk0
(T ) ≤ Sk(T ) ≤ S(T ).

Lemma [thermodynamic relation] Let T ∈ (0,1) and k ∈ N+.

(i) F ′
k(T ) = −Sk(T ), E′

k(T ) = Ck(T ), and S′
k(T ) = Ck(T )/T .

(ii) F ′(T ) = −S(T ), E′(T ) = C(T ), and S′(T ) = C(T )/T .

(iii) Sk(T ), Ck(T ) ≥ 0 and S(T ), C(T ) > 0.
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Relation between the sufficient conditions of FPTs I

Theorem There does not exist T ∈ (0,1) such that both Ω(T ) and F (T )

are computable.

Proof)

Contrarily, assume that both Ω(T ) and F (T ) are computable for some
T ∈ (0,1). Since the statistical mechanical relation F (T ) = −T log2 Ω(T )
holds,

T = −
F (T )

log2 Ω(T )
.

Thus, T is computable, and therefore Ω(T ) is weakly Chaitin T -random,
i.e., Tn ≤ H((Ω(T )) ¹ n) + O(1). However, this is impossible, since Ω(T ) is
computable and therefore H((Ω(T )) ¹ n) ≤ 2 log2 n + O(1). Thus we have
a contradiction.

{T ∈ (0,1) | Ω(T ) is computable } ∩ {T ∈ (0,1) | F (T ) is computable } = ∅.
dense in (0,1) dense in (0,1)

In particular, this shows that the computability of Ω(T ) is not a necessary
condition for T to be a fixed point in the fixed point theorem by Ω(T ).
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Relation between the sufficient conditions of FPTs II

Theorem There does not exist T ∈ (0,1) such that all of Ω(T ), E(T ),

and S(T ) are computable.

Proof) Use the statistical mechanical relation

S(T ) =
E(T )

T
+ log2 Ω(T ).

Theorem There does not exist T ∈ (0,1) such that all of F (T ), E(T ),

and S(T ) are computable.

Proof) Use the thermodynamic relation

S(T ) =
E(T ) − F (T )

T
.
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Some other property of the sufficient condition in FPTs

Using the fixed point theorem by Ω(T ), some property of the computability

of Ω(T ) is derived.

Let T ∈ (0,1) and a ∈ (0,1]. Assume that a is computable.

Ω(aT ) is computable ⇒ lim
n→∞

H((aT ) ¹ n)

n
= aT ⇒ lim

n→∞
H(T ¹ n)

n
= aT .

by FPT by H((aT ) ¹ n) = H(T ¹ n) + O(1)

Theorem Sa∩Sb = ∅ for any distinct computable real numbers a, b ∈ (0,1],

where Sa = {T ∈ (0,1) | Ω(aT ) is computable }.

Example For every T ∈ (0,1), if Ω(T ) is computable, then for each inte-

ger n ≥ 2, Ω(T/n) is not computable. Namely,

for every T ∈ (0,1), if the sum
∑

p∈DomU

2−|p|/T is computable, then its power

sum
∑

p∈DomU

(
2−|p|/T

)n
is not computable for every integer power n ≥ 2.
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Summary

In this talk, we introduced and showed the following fixed point theorem

on partial randomness, from the point of view of algorithmic randomness.

Theorem [fixed point theorem on partial randomness]

For every T ∈ (0,1), if Ω(T ) is a computable real number, then

(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T -random and T -compressible,

(iii) lim
n→∞

H(T ¹ n)

n
= T .

After that, we introduced several variants of this theorem, and investigate

their properties and relation. In particular, we showed that the sufficient

condition for T to be a fixed point is not a necessary condition in the fixed

point theorems.

20




