Fixed point theorems on partial randomness

Kohtaro Tadaki

Research and Development Initiative Chuo University Tokyo, Japan

Supported by SCOPE from the Ministry of Internal Affairs and Communications of Japan

Abstract

In this talk, we show the following fixed point theorem on partial randomness, from the point of view of algorithmic randomness.

Theorem [fixed point theorem on partial randomness] For every $T \in (0,1)$, if $\Omega(T)$ is a computable real number, then (i) *T* is right-computable and not left-computable, (ii) *T* is weakly Chaitin *T*-random and *T*-compressible, (iii) $\lim_{n \to \infty} \frac{H(T \upharpoonright n)}{n} = T$. \Rightarrow The compression rate of *T* equals to *T*. \Box

After that, we introduce variants of this theorem, and investigate their properties and relation.

Preliminaries: Program-size Complexity

- $\{0,1\}^* := \{\lambda, 0, 1, 00, 01, 10, 11, 000, \dots\}$. The set of finite binary strings.
- For any $s \in \{0,1\}^*$, |s| denotes the <u>length</u> of s.
- Let $V \subset \{0,1\}^*$. We say V is <u>prefix-free</u> if for any distinct s and $t \in V$, s is not a prefix of t.

For example $\{0, 10\}$: prefix-free $\{0, 01\}$: not prefix-free

Let U be a universal self-delimiting Turing machine. Dom U, i.e., the domain of definition of U, is a prefix-free set. Definition The program-size complexity (or Kolmogorov complexity) H(s)of $s \in \{0,1\}^*$ is defined by $H(s) = min \{|z|| | z \in \{0,1\}^* \ 0 \in H(s)\}$

$$H(s) := \min \left\{ |p| \mid p \in \{0,1\}^* \& U(p) = s \right\}.$$

H(s): The length of the shortest input for the universal self-delimiting Turing machine U to output s. $\Rightarrow H(s)$: The degree of randomness of s.

Preliminaries: Randomness of Real Number

Definition For any $\alpha \in \mathbb{R}$ and $n \in \mathbb{N}^+$, we denote by $\alpha \upharpoonright n$ the first n bits of the base-two expansion of $\alpha - \lfloor \alpha \rfloor$, i.e., the fractional part of α . **Definition** [weak Chaitin randomness, Chaitin 1975] We say $\alpha \in \mathbb{R}$ is <u>weakly Chaitin random</u> if $n \leq H(\alpha \upharpoonright n) + O(1)$, i.e., any prefix of the base-two expansion of α cannot be compressed by H.

This notion is equivalent to Martin-Löf randomness (Schnorr).

Definition [Chaitin's halting probability Ω , Chaitin 1975]

$$\Omega := \sum_{p \in \mathsf{Dom}\, U} 2^{-|p|}.$$

Theorem [Chaitin 1975] Ω is weakly Chaitin random.

Preliminaries: Partial Randomness of Real Number

The partial randomness (degree of randomness) of a real number can be characterized by a real number.

Definition [weak Chaitin *T*-randomness, Tadaki 2002] Let $T \in [0, 1]$.

We say $\alpha \in \mathbb{R}$ is weakly Chaitin *T*-random if $Tn \leq H(\alpha \upharpoonright n) + O(1)$.

In the case of T = 1, the weak Chaitin T-randomness results in the weak Chaitin randomness.

$$\begin{array}{l} \hline \textbf{Definition} & [T\text{-compressibility}] \quad \textbf{Let } T \in [0,1].\\ \hline \textbf{We say } \alpha \in \mathbb{R} \text{ is } \underline{T\text{-compressible}} \text{ if } H(\alpha \upharpoonright n) \leq Tn + o(n),\\ & \text{ which is equivalent to } \limsup_{n \to \infty} \frac{H(\alpha \upharpoonright n)}{n} \leq T.\\ \hline \textbf{Remark} & \textbf{If } \alpha \in \mathbb{R} \text{ is weakly Chaitin } T\text{-random and } T\text{-compressible, then}\\ & \lim_{n \to \infty} \frac{H(\alpha \upharpoonright n)}{n} = T.\\ \hline \textbf{The } \underline{compression \ rate} \text{ of } \alpha \text{ by program-size complexity equals to } T.\\ \hline \textbf{(The converse does not necessarily hold.)} \end{array}$$

Preliminaries: Generalization of Ω

Definition [generalization of Chaitin's Ω , Tadaki 1999]

$$\Omega(T) := \sum_{p \in \text{Dom } U} 2^{-\frac{|p|}{T}} \qquad (T > 0).$$

 $\Omega(1)=\Omega.$

Theorem [Tadaki 1999] Let $T \in \mathbb{R}$.

(i) If $0 < T \le 1$ and T is computable, then $\Omega(T)$ is weakly Chaitin T-random and T-compressible. \Rightarrow The compression rate of $\Omega(T)$ equals to T. (ii) If 1 < T, then $\Omega(T)$ diverges to ∞ .

Here, T is called <u>computable</u> if the mapping $\mathbb{N}^+ \ni n \mapsto T \upharpoonright n$ is a total recursive function.

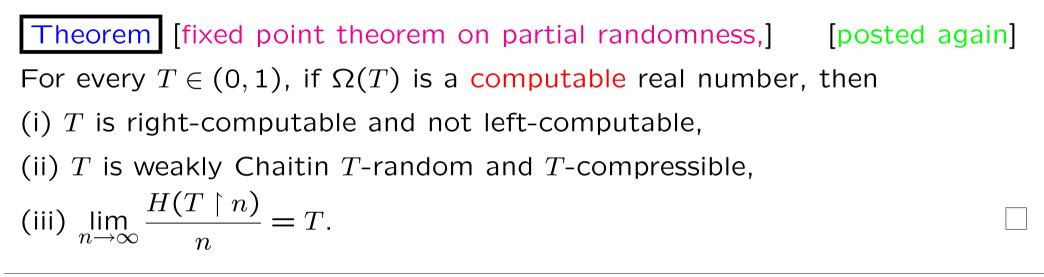
Fixed Point Theorem on Partial Randomness

Theorem [fixed point theorem on partial randomness, Tadaki, CiE 2008] For every $T \in (0,1)$, if $\Omega(T)$ is a computable real number, then (i) *T* is right-computable and not left-computable, (ii) *T* is weakly Chaitin *T*-random and *T*-compressible, (iii) $\lim_{n \to \infty} \frac{H(T \upharpoonright n)}{n} = T$. \Rightarrow The compression rate of *T* equals to *T* itself.

Here, a real α is called <u>right-computable</u> if the set $\{r \in \mathbb{Q} \mid \alpha < r\}$ is r.e., and α is called <u>left-computable</u> if $-\alpha$ is right-computable.

Fixed Point Theorem on Partial Randomness: Proof

Proof of Fixed Point Theorem



Lemma [upper bound I] For every $T \in (0, 1)$, if $\Omega(T)$ is right-computable then T is also right-computable.

Lemma [upper bound II] For every $T \in (0, 1)$, if $\Omega(T)$ is left-computable and T is right-computable, then T is T-compressible.

Lemma [lower bound] For every $T \in (0, 1)$, if $\Omega(T)$ is right-computable then T is weakly Chaitin T-random.

Proofs of the three lemmas

Lemma [upper bound I] For every $T \in (0, 1)$, if $\Omega(T)$ is right-computable then T is also right-computable.

Proof) For each $k \in \mathbb{N}^+$ and $x \in (0,1)$, let $\omega_k(x) = \sum_{i=1}^k 2^{-|p_i|/x}$, where p_1, p_2, p_3, \ldots is a particular recursive enumeration of Dom U. Then we see that, for every $r \in \mathbb{Q} \cap (0,1)$, T < r if and only if there exists $k \in \mathbb{N}^+$ such that $\Omega(T) < \omega_k(r)$. This is because $\Omega(x)$ is an increasing function of $x \in (0,1]$ and $\lim_{k\to\infty} \omega_k(r) = \Omega(r)$. Since $\Omega(T)$ is right-computable, the set $\{r \in \mathbb{Q} \cap (0,1) \mid \exists k \in \mathbb{N}^+ \ \Omega(T) < \omega_k(r)\}$ is r.e. and therefore the set $\{r \in \mathbb{Q} \cap (0,1) \mid T < r\}$ is also r.e.

Lemma [upper bound II] For every $T \in (0, 1)$, if $\Omega(T)$ is left-computable and T is right-computable, then T is T-compressible. **Proof)** Omitted. **Lemma** [lower bound] For every $T \in (0, 1)$, if $\Omega(T)$ is right-computable then T is weakly Chaitin T-random.

Proof) The following procedure calculates a partial recursive function $\Psi: \{0,1\}^* \to \{0,1\}^*$ such that $Tn - Tc < H(\Psi(T \upharpoonright n))$. The lemma follows from $H(\Psi(T \upharpoonright n)) \leq H(T \upharpoonright n) + O(1)$. Let $\omega_k(x) = \sum_{i=1}^k 2^{-|p_i|/x}$. **Procedure:** Given $T \upharpoonright n$, one can effectively find k_0 which satisfies

 $\Omega(T) < \omega_{k_0}(0.(T \upharpoonright n) + 2^{-n}).$

This is possible because $\Omega(x)$ is an increasing function of x, $\lim_{k\to\infty} \omega_k(r) = \Omega(r)$ for every $r \in \mathbb{Q} \cap (0, 1)$, and $\Omega(T)$ is right-computable. It follows that

$$\sum_{i=k_0+1}^{\infty} 2^{-\frac{|p_i|}{T}} = \Omega(T) - \omega_{k_0}(T) < \omega_{k_0}(0.(T \upharpoonright n) + 2^{-n}) - \omega_{k_0}(T) < 2^{c-n}.$$

Hence, for every $i > k_0$, $2^{-\frac{|p_i|}{T}} < 2^{c-n}$ and therefore $Tn - Tc < |p_i|$. Thus, by calculating the set { $U(p_i) \mid i \leq k_0$ } and picking any one finite binary string s which is not in this set, one can then obtain $s \in \{0, 1\}^*$ such that Tn - Tc < H(s).

Remark on the sufficient condition in the fixed Point Theorem

Theorem [fixed point theorem on partial randomness] [posted again] For every $T \in (0,1)$, if $\Omega(T)$ is computable then T is weakly Chaitin T-random and T-compressible.

Note that $\Omega(x)$ is a strictly increasing continuous function of $x \in (0, 1)$, and the set of all computable real numbers is dense in \mathbb{R} . Thus,

Theorem The set $\{T \in (0,1) \mid \Omega(T) \text{ is computable} \}$ is dense in (0,1).

Corollary [density of the fixed points]

The set $\{T \in (0,1) \mid T \text{ is weakly Chaitin } T\text{-random and } T\text{-compressible}\}$ is dense in (0,1).

At this point, the following question would arise naturally:

Question Is this sufficient condition, i.e., the computability of $\Omega(T)$, also necessary for T to be a fixed point ?

Answer Completely not !! (as we can see through the following argument)

Thermodynamic Quantities in AIT: **Definition**

The thermodynamic quantities in AIT (algorithmic information theory) is introduced in the following manner.

Definition Let q_1, q_2, q_3, \ldots be an arbitrary enumeration of Dom U. Note that the results of this talk are independent of the choice of $\{q_i\}$. **Definition** [thermodynamic quantities in AIT, Tadaki, CiE 2008] Let T > 0. (i) Partition Function: $Z(T) := \lim_{k \to \infty} Z_k(T)$, where $Z_k(T) = \sum_{i=1}^k 2^{-\frac{|q_i|}{T}}$. (ii) Free Energy: $F(T) := \lim_{k \to \infty} F_k(T)$, where $F_k(T) = -T \log_2 Z_k(T)$. (ii) Energy: $E(T) := \lim_{k \to \infty} E_k(T)$, where $E_k(T) = \frac{1}{Z_k(T)} \sum_{i=1}^{\kappa} |q_i| 2^{-\frac{|q_i|}{T}}$. (iii) Entropy: $S(T) := \lim_{k \to \infty} S_k(T)$, where $S_k(T) = \frac{E_k(T) - F_k(T)}{T}$.

Remark (i) $Z(T) = \Omega(T)$. (ii) The real T corresponds to "temperature".

Thermodynamic Quantities in AIT: Properties

The thermodynamic quantities F(T), E(T), and S(T) has the almost same randomness properties as $\Omega(T)$, i.e., Z(T).

Theorem [free energy F(T)] Let $T \in \mathbb{R}$.

(i) If $0 < T \le 1$ and T is computable, then F(T) converges to a real number which is weakly Chaitin T-random and T-compressible. (same as for $\Omega(T)$) (ii) If 1 < T, then F(T) diverges to $-\infty$.

Definition We say $\alpha \in \mathbb{R}$ is <u>Chaitin T-random</u> if $\lim_{n\to\infty} H(\alpha \upharpoonright n) - Tn = \infty$.

Theorem [energy E(T)] Let $T \in \mathbb{R}$.

(i) If 0 < T < 1 and T is computable, then E(T) converges to a real number which is Chaitin T-random and T-compressible. (ii) If $1 \le T$, then E(T) diverges to ∞ .

Theorem [entropy S(T)] Let $T \in \mathbb{R}$.

(i) If 0 < T < 1 and T is computable, then S(T) converges to a real number which is Chaitin T-random and T-compressible. (ii) If $1 \le T$, then S(T) diverges to ∞ . Thermodynamic Quantities in AIT: Fixed Point Theorems

In the fixed point theorem, $\Omega(T)$ can be replaced by each of the thermodynamic quantities F(T), E(T), and S(T).

Theorem [fixed point theorem by the free energy F(T)]

For every $T \in (0, 1)$, if F(T) is computable, then

(i) T is right-computable and not left-computable,

(ii) T is weakly Chaitin T-random and T-compressible.

This theorem has the exactly same form as for $\Omega(T)$.

Theorem [fixed point theorem by the energy E(T)]

For every $T \in (0, 1)$, if E(T) is computable, then

(i) T is right-computable and not left-computable,

(ii) T is Chaitin T-random and T-compressible.

Theorem [fixed point theorem by the entropy S(T)]

For every $T \in (0, 1)$, if S(T) is computable, then

- (i) T is right-computable and not left-computable,
- (ii) T is Chaitin T-random and T-compressible.

Proof of the fixed point theorem by free energy F(T)

Theorem [general form of fixed point theorem] Let $f: (0,1) \to \mathbb{R}$. Suppose that f is a strictly increasing function and there is $g: (0,1) \times \mathbb{N}^+ \to \mathbb{R}$ which satisfies the following conditions:

(i) $\forall T \in (0,1) \ \lim_{k \to \infty} g(T,k) = f(T).$ (ii) The mapping $\mathbb{Q} \times (\mathbb{Q} \cap (0,1)) \ni (r,k) \mapsto g(r,k)$ is computable. (iii) $\forall T \in (0,1) \ \exists k_0 \in \mathbb{N}^+ \ \exists a, b \in \mathbb{N} \ \forall k \ge k_0$

$$2^{-\frac{|p_{k+1}|}{T}-a} \leq g(T,k+1) - g(T,k) \leq 2^{-\frac{|p_{k+1}|}{T}+b}$$

(iv) $\forall T \in (0,1) \exists t \in (T,1) \exists k_0 \in \mathbb{N}^+ \exists c, d \in \mathbb{N} \forall k \ge k_0 \forall x \in (T,t)$

$$2^{-c}(x-T) \le g(x,k) - g(T,k) \le 2^{d}(x-T).$$

(v) $\forall t_1, t_2 \in (0, 1)$ with $t_1 < t_2 \exists k_0 \in \mathbb{N}^+ \forall k \ge k_0 \forall x \in [t_1, t_2] g(x, k) \le f(x)$. (vi) $\forall k \in \mathbb{N}^+ \forall T \in (0, 1) \quad \lim_{x \to T+0} g(x, k) = g(T, k)$.

Then, for every $T \in (0, 1)$, if f(T) is computable, then T is weakly Chaitin T-random and T-compressible.

Proof of the fixed point theorem by free energy F(T)

Theorem [fixed point theorem by free energy F(T)] [posted again] For every $T \in (0, 1)$, if F(T) is a computable real number, then T is weakly Chaitin T-random and T-compressible.

A portion of the proof:

Using the mean value theorem and the lemma below,

$$S_k(T)(x-T) \le F_k(T) - F_k(x) \le S_k(t)(x-T)$$

for every $k \in \mathbb{N}^+$ and every $T, x, t \in (0, 1)$ with T < x < t. On the other hand, for every $T \in (0, 1)$, there exists $k_0 \in \mathbb{N}^+$ such that, for every $k \ge k_0$,

 $0 < S_{k_0}(T) \le S_k(T) \le S(T).$

Lemma [thermodynamic relation] Let $T \in (0,1)$ and $k \in \mathbb{N}^+$. (i) $F'_k(T) = -S_k(T)$, $E'_k(T) = C_k(T)$, and $S'_k(T) = C_k(T)/T$. (ii) F'(T) = -S(T), E'(T) = C(T), and S'(T) = C(T)/T. (iii) $S_k(T), C_k(T) \ge 0$ and S(T), C(T) > 0.

Relation between the sufficient conditions of FPTs I

Theorem There does not exist $T \in (0, 1)$ such that both $\Omega(T)$ and F(T) are computable.

Proof)

Contrarily, assume that both $\Omega(T)$ and F(T) are computable for some $T \in (0,1)$. Since the statistical mechanical relation $F(T) = -T \log_2 \Omega(T)$ holds, F(T)

$$T = -\frac{F(T)}{\log_2 \Omega(T)}.$$

Thus, T is computable, and therefore $\Omega(T)$ is weakly Chaitin T-random, i.e., $Tn \leq H((\Omega(T)) \upharpoonright n) + O(1)$. However, this is impossible, since $\Omega(T)$ is computable and therefore $H((\Omega(T)) \upharpoonright n) \leq 2\log_2 n + O(1)$. Thus we have a contradiction.

 $\{T \in (0,1) \mid \Omega(T) \text{ is computable} \} \cap \{T \in (0,1) \mid F(T) \text{ is computable} \} = \emptyset.$ dense in (0,1) dense in (0,1)

In particular, this shows that the computability of $\Omega(T)$ is not a necessary condition for T to be a fixed point in the fixed point theorem by $\Omega(T)$.

Relation between the sufficient conditions of FPTs II

Theorem There does not exist $T \in (0,1)$ such that all of $\Omega(T)$, E(T), and S(T) are computable.

Proof) Use the statistical mechanical relation

$$S(T) = \frac{E(T)}{T} + \log_2 \Omega(T).$$

Theorem There does not exist $T \in (0,1)$ such that all of F(T), E(T), and S(T) are computable.

Proof) Use the thermodynamic relation

$$S(T) = \frac{E(T) - F(T)}{T}.$$

Some other property of the sufficient condition in FPTs

Using the fixed point theorem by $\Omega(T)$, some property of the computability of $\Omega(T)$ is derived.

Let $T \in (0, 1)$ and $a \in (0, 1]$. Assume that a is computable.

$$\Omega(aT) \text{ is computable } \Rightarrow \lim_{n \to \infty} \frac{H((aT) \upharpoonright n)}{n} = aT \Rightarrow \lim_{n \to \infty} \frac{H(T \upharpoonright n)}{n} = aT.$$

by FPT by $H((aT) \upharpoonright n) = H(T \upharpoonright n) + O(1)$
Theorem $S_a \cap S_b = \emptyset$ for any distinct computable real numbers $a, b \in (0, 1]$,

where $S_a = \{ T \in (0, 1) \mid \Omega(aT) \text{ is computable } \}.$

Example For every $T \in (0, 1)$, if $\Omega(T)$ is computable, then for each integer $n \ge 2$, $\Omega(T/n)$ is not computable. Namely,

for every $T \in (0, 1)$, if the sum $\sum_{p \in \text{Dom } U} 2^{-|p|/T}$ is computable, then its power sum $\sum_{p \in \text{Dom } U} (2^{-|p|/T})^n$ is not computable for every integer power $n \ge 2$. \Box

Summary

In this talk, we introduced and showed the following fixed point theorem on partial randomness, from the point of view of algorithmic randomness.

Theorem [fixed point theorem on partial randomness] For every $T \in (0, 1)$, if $\Omega(T)$ is a computable real number, then (i) T is right-computable and not left-computable, (ii) T is weakly Chaitin T-random and T-compressible, (iii) $\lim_{n \to \infty} \frac{H(T \upharpoonright n)}{n} = T$.

After that, we introduced several variants of this theorem, and investigate their properties and relation. In particular, we showed that the sufficient condition for T to be a fixed point is not a necessary condition in the fixed point theorems.