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Abstract

The optimal prefix-free machine U is a universal decoding algorithm used

to define the notion of program-size complexity H(s).

In this talk, we investigate the fiber of an optima prefix-free machine

U at a string s ∈ {0,1}∗, i.e., the set

U−1(s) := { p | U(p) = s }.
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Preliminaries: Program-size Complexity

Definition [prefix-free machine] A partial recursive function M : {0,1}∗ →
{0,1}∗ is called a prefix-free machine if DomM is a prefix-free set.

Definition For any prefix-free machine M and any s ∈ {0,1}∗,

HM(s) := min
{
|p|

∣∣∣ p ∈ {0,1}∗ &M(p) = s
}
.

Definition [optimal prefix-free machine] A prefix-free machine U is called

optimal if, for each prefix-free machine M , there exists d ∈ N such that, for

every s ∈ {0,1}∗,

HU(s) ≤ HM(s) + d.

Definition [program-size complexity] We choose a particular optimal prefix-

free machine U as a standard one. Then the program-size complexity (or

prefix-free Kolmogorov complexity) H(s) of s ∈ {0,1}∗ is defined by

H(s) := HU(s).
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Aim of This Talk

The fiber U−1(s) of an optimal prefix-free machine U at a string s ∈ {0,1}∗,
is defined by

U−1(s) := { p ∈ DomU | U(p) = s }.

The fiber U−1(s) is considered to be important. For example, the definition

of H(s) is directly related to the fiber by

H(s) = min
{
|p|

∣∣∣ p ∈ U−1(s)
}
.

In what follows, we call elements in the fiber U−1(s) programs.

In this talk,

we first investigate the number #U−1(s) of programs in the fiber U−1(s).

We next investigate the distribution of programs in the fiber U−1(s).
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Number of Programs in Fibers
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Number of Programs in Fibers I

Note that the fiber U−1(s) is an infinite set, in general.

However, our first result shows that, while keeping H(s) unchanged for all

s, we can modify U so that each U−1(s) is a finite set and moreover the

number of programs in U−1(s) is bounded by some total recursive function

f : {0,1}∗ → N.

Theorem

For every optimal prefix-free machine V , there exists an optimal prefix-free

machine W for which the following (i) and (ii) hold:

(i) HV (s) = HW (s) for every s ∈ {0,1}∗.

(ii) There exists a total recursive function f : {0,1}∗ → N such that

#W−1(s) ≤ f(s)

for every s ∈ {0,1}∗.
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Number of Programs in Fibers II

Theorem [posted again]

For every optimal prefix-free machine V , there exists an optimal prefix-free
machine W for which the following (i) and (ii) hold:

(i) HV (s) = HW (s) for every s ∈ {0,1}∗.
(ii) There exists a total recursive function f : {0,1}∗ → N such that

#W−1(s) ≤ f(s)

for every s ∈ {0,1}∗.
Proof)

Let (p1, s1), (p2, s2), (p3, s3), . . . be a particular recursive enumeration of
Graph(V ). Consider the total recursive function g(s) = min{ i | si = s }.
Define a prefix-free machine W by

W−1(s) = { p ∈ V −1(s) | |p| ≤ |pg(s)| }.
By counting the number of binary strings of length at most |pg(s)|, we see

that #W−1(s) ≤ 2|pg(s)|+1 − 1.
It follows from HV (s) ≤ |pg(s)| that HW (s) = HV (s) and therefore W

is optimal.
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Number of Programs in Fibers III

The following theorem shows that the total recursive upper bound f(s) in
the previous theorem cannot be chosen to be tight at all.

Theorem

Let V be an optimal prefix-free machine, and let f : {0,1}∗ → N be a total
recursive function. Suppose that #V −1(s) ≤ f(s) for all s ∈ {0,1}∗. Then

lim
s→∞

{
f(s)−#V −1(s)

}
= ∞.

Here we identify {0,1}∗ with N.

Proof) We use the technique by Meyer and Loveland to show that, for

every α ∈ R, if C(α�n| n) = O(1) then α is computable.
Let us assume contrarily that lims→∞

{
f(s)−#V −1(s)

}
6= ∞. Then,

α := lim inf
s→∞

{
f(s)−#V −1(s)

}
is finite and is in N. Hence, there exists s0 ∈ {0,1}∗ such that α ≤ f(s) −
#V −1(s) for all s ≥ s0 and α = f(s) − #V −1(s) for infinitely many s ≥ s0.
Based on this, one can compute a string with arbitrary high program-size
complexity.
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Number of Programs in Fibers IV

As a result, the following holds in particular.

Corollary Let V be an optimal prefix-free machine. Suppose that V −1(s)

is a finite set for all s ∈ {0,1}∗. Then the function #V −1(s) of s ∈ {0,1}∗

is not bounded to the above.
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Number of Programs in Fibers V

On the other hand, while keeping H(s) unchanged for all s, we can modify

U so that each U−1(s) is an infinite set.

Theorem

For every optimal prefix-free machine V , there exists an optimal prefix-free

machine W for which the following conditions (i) and (ii) hold:

(i) HV (s) = HW (s) for every s ∈ {0,1}∗.

(ii) W−1(s) is an infinite set for every s ∈ {0,1}∗.
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Distribution of Programs in Fibers
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Distribution of Programs in Fibers I

Next, we investigate the distribution of programs in the fiber V −1(s) of an
optimal prefix-free machine V at a string s ∈ {0,1}∗

In 1975 Solovay showed the following result for the distribution of all
programs in DomV for an optimal prefix-free machine V .

Theorem [Solovay 1975]

Let V be an optimal prefix-free machine, and let

SV (n) = { p | |p| ≤ n & p ∈ DomV }.
Then

#SV (n) = 2n−H(n)+O(1),

i.e., there exists d ∈ N such that

(i) #SV (n) ≤ 2n−H(n)+d for all n ∈ N, and

(ii) #SV (n) ≥ 2n−H(n)−d for all n ∈ N with n−H(n)− d ≥ 0.

In what follows, we replace DomV by V −1(s) in SV (n) and investigate the
properties of the resultant set SV (n, s).
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Distribution of Programs in Fibers II

We define

SM(n, s) := { p | |p| ≤ n & p ∈ M−1(s) }

for any prefix-free machine M , n ∈ N, and s ∈ {0,1}∗.

Theorem

Let M be a prefix-free machine. Then

#SM(n, s) ≤ 2n−H(n,s)+O(1).

Here H(n, s) is defined as H(b(n, s)) with a particular bijective total recur-

sive function b : N× {0,1}∗ → {0,1}∗.
Proof) We use the property of universal probability (i.e., maximal c.e. dis-

crete semimeasure).

First define f : {0,1}∗ → [0,∞) by f(b(n, s)) = #SM(n, s)2−n−1. Then

f is shown to be a c.e. discrete semimeasure. Since the mapping t 7→ 2−H(t)

is a universal probability, f(t) ≤ 2−H(t)+O(1) by its definition.
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Distribution of Programs in Fibers III

It is natural to consider prefix-free machines which attain the upper bound

2n−H(n,s)+O(1)

in the previous theorem. Thus, we introduce the following notion to prefix-
free machines.

Definition [maximal redundancy]

A prefix-free machine M is called maximally redundant if

2n−H(n,s)+O(1) ≤ #SM(n, s),

i.e., if there exists d ∈ N such that

2n−H(n,s)−d ≤ #SM(n, s)

for all n ∈ N and s ∈ {0,1}∗ with n−H(n, s)−d ≥ 0. Note that this condition
is equivalent to the condition that there exists d ∈ N for which

b2n−H(n,s)−dc ≤ #SM(n, s) for all n and s.

Proposition For every prefix-free machine M , M is maximally redundant

if and only if #SM(n, s) = 2n−H(n,s)+O(1).
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Distribution of Programs in Fibers IV

Theorem For every prefix-free machine M , if M is maximally redundant

then M is optimal.

Lemma H(s) + n−H(H(s) + n, s) diverges to ∞ as n → ∞ uniformly on

s ∈ {0,1}∗.

Proof of the theorem)

Since M is maximally redundant, there exists d ∈ N such that

2n−H(n,s)−d ≤ #SM(n, s)

for all n and s with n−H(n, s)− d ≥ 0.
On the other hand, by the above lemma, there exists n0 ∈ N such that,

for every s ∈ {0,1}∗,

H(s) + n0 −H(H(s) + n0, s) ≥ d.

Hence,

1 ≤ #SM(H(s) + n0, s).

This implies that HM(s) ≤ H(s) + n0 and therefore M is optimal.
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Distribution of Programs in Fibers V

Remark Not every optimal prefix-free machine is maximally redundant.

There are many such counter examples. We saw the optimal prefix-free

machine W for which W−1(s) is finite for all s ∈ {0,1}∗.
An interesting example might be the optimal prefix-free machine V

such that

#SV (n, s) =

{
n−HV (s) + 1 if n ≥ HV (s),

0 otherwise

(Chaitin 75, Figueira, Stephan, & Wu 2005). The machine V satisfies

2−HV (s)+1 = ΩV

(Figueira, Stephan, & Wu 2005), where

ΩV :=
∑

p∈DomV

2−|s|.
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Distribution of Programs in Fibers VI

Theorem

There exists a maximally redundant prefix-free machine.

Proof)

Define a partial recursive function V : {0,1}∗ → {0,1}∗ by the condition that

V (p) = s if and only if there exists a prefix q of p such that U(q) = b(|p| , s).
Recall here that U is the optimal prefix-free machine used to define H(s).

Then we can show that V is a pref-free machine. Moreover, if n−H(n, s) ≥ 0

then 2n−H(n,s) ≤ #SV (n, s).
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Distribution of Programs in Fibers VII

Theorem [Calude, Hertling, Khoussainov and Wang 2001, Kučera and

Slaman 2001] For every α ∈ (0,1), the following conditions are equivalent:

(i) α is left-computable and Martin-Löf random.

(ii) α = ΩV for some optimal prefix-free machine V .

We can give a characterization of left-computable random reals by maxi-

mally redundant prefix-free machines as follows.

Theorem

For every α ∈ (0,1), the following conditions are equivalent:

(i) α is left-computable and Martin-Löf random.

(ii) α = ΩV for some maximally redundant prefix-free machine V .
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