A statistical mechanical interpretation of algorithmic information theory

Kohtaro Tadaki

Research and Development Initiative, Chuo University JST CREST
Tokyo, Japan
http://www2.odn.ne.jp/tadaki/

Abstract: What we will do in this talk U : universal Turing machine.
Algorithmic Information Theory (AIT, for short) is a theory of program-size. In this talk, we introduce the notion of thermodynamic quantities into AIT by performing the following replacements for the thermodynamic quantities of a quantum system at temperature T obeying the canonical distribution. We then investigate their randomness properties.

An energy eigenstate $n \Rightarrow$ A program p of U,
The energy E_{n} of $n \quad \Rightarrow$ The length $|p|$ of p,
Boltzmann constant $k \Rightarrow 1 / \ln 2$. Boltzmann factor: $2^{-\frac{|p|}{T}}$
Partition function $Z(T)=\sum_{n} e^{-\frac{E_{n}}{k T}} \quad \Rightarrow \quad Z(T)=\sum_{p} 2^{-\frac{|p|}{T}}$,
Free energy $F(T)=-k T \ln Z(T) \quad \Rightarrow \quad F(T)=-T \log _{2} Z(T)$,
Energy $\quad E(T)=\frac{1}{Z(T)} \sum_{n} E_{n} e^{-\frac{E_{n}}{k T}} \quad \Rightarrow \quad E(T)=\frac{1}{Z(T)} \sum_{p}|p| 2^{-\frac{|p|}{T}}$,
Entropy $\quad S(T)=\frac{E(T)-F(T)}{T} \Rightarrow \quad S(T)=\frac{E(T)-F(T)}{T}$.

Temperature $=$ Compression Rate.

Preliminaries: Prefix-free Sets

- $\{0,1\}^{*}:=\{\lambda, 0,1,00,01,10,11,000,001,010,011, \ldots\}$

The set of finite binary strings
Here, λ denotes the empty string.

- For any $s \in\{0,1\}^{*},|s|$ denotes the length of s.

For example $\quad|010|=3, \quad|\lambda|=0$.

- Let P be a subset of $\{0,1\}^{*}$. We say P is prefix-free if for any distinct s and $t \in P, s$ is not a prefix of t.

For example $\{0,10\}$: prefix-free.
$\{0,01\}$: not prefix-free.

- A prefix-free set can be finite and can be infinite.
- For every prefix-free set $P \subset\{0,1\}^{*}$,

$$
\sum_{s \in P} 2^{-|s|} \leq 1 . \quad \text { (Kraft inequality) }
$$

Preliminaries: Prefix of Real Number

Definition [a prefix of a real]
Let α be a real, and let n be a positive integer.
We denote by $\alpha \upharpoonright_{n}$ the first n bits of the base-two expansion of $\alpha-\lfloor\alpha\rfloor$.
The fractional part of α.
Example [circle ratio]
Consider the case of $\alpha=\pi$, the circle ratio.

$$
\pi=11.001001000011111101 \ldots \ldots
$$

in base-two notation.
Therefore, the fractional part of π,

$$
\pi-\lfloor\pi\rfloor=.001001000011111101 \ldots \ldots
$$

in base-two notation.
Thus,

$$
\pi \upharpoonright_{1}=0, \quad \pi \upharpoonright_{2}=00, \quad \pi \upharpoonright_{3}=001, \quad \pi \upharpoonright_{4}=0010
$$

These are finite binary strings.

Preliminaries: Partial Recursive Functions - Definition

Definition [Partial recursive function]

We say f is a partial recursive function if the following two hold for f :
(i) There exists a subset V of $\{0,1\}^{*}$ such that $f: V \rightarrow\{0,1\}^{*}$, where V is the domain of definition of f and denoted by Dom f.
(ii) There exists an algorithm \mathcal{A} such that, for each $s \in\{0,1\}^{*}$, when executing \mathcal{A} with the input s,
if $s \in \operatorname{Dom} f$ then the computation of \mathcal{A} terminates and outputs $f(s)$;
if $s \notin \operatorname{Dom} f$ then the computation of \mathcal{A} does not terminate.

Here, we can regard an algorithm, for example, as a program written by the programing language C.

Preliminaries: Partial Recursive Functions - Example

Example [a partial recursive function calculating a prefix of π]
We define the function $f_{\pi}: V_{\pi} \rightarrow\{0,1\}^{*}$ by the conditions that
(i) For every positive integer n,

$$
f_{\pi}(\text { the base-two representation of } n)=\pi \upharpoonright_{n}
$$

i.e.,

$$
f_{\pi}(1)=\pi \upharpoonright_{1}=0, f_{\pi}(10)=\pi \upharpoonright_{2}=00, f_{\pi}(11)=\pi \upharpoonright_{3}=001, \ldots \ldots
$$

(ii) Dom $f_{\pi}\left(=V_{\pi}\right)$ is the set of the base-two representations of all positive integers, i.e., $\operatorname{Dom} f_{\pi}=\{1,10,11,100,101,110,111,1000, \ldots\}$.

Obviously, there exists an algorithm \mathcal{A}_{π} such that, given the base-two representation of a positive integer n as an input, the computation of \mathcal{A}_{π} terminates and outputs $\pi \upharpoonright_{n}$.

For any $s \notin \operatorname{Dom} f_{\pi}, \mathcal{A}_{\pi}$ with the input s can be made unterminated, for example, by writing the code while(1); on an appropriate place of the program in the case of C.

Thus, f_{π} is a partial recursive function.

Preliminaries: Computers

Definition [computer] A partial recursive function C is called a computer if Dom C is a prefix-free set.

Example
The partial recursive function f_{π} is not a computer because $1,10 \in \operatorname{Dom} f_{\pi}=$ $\{1,10,11,100,101,110, \ldots\}$.

A computer C_{π} calculating a prefix of π is constructed as follows:
Let $1 b_{1} b_{2} \ldots b_{l-1} b_{l}$ be the base-two representation of any positive integer n, where $b_{i}=0$ or 1 . Then define $\bar{n}:=10 b_{1} 0 b_{2} 0 \ldots b_{l-1} 0 b_{l} 1$.

We define the function C_{π} by the condition that, for every positive integer $n, C_{\pi}(\bar{n})=\pi \upharpoonright_{n}$, i.e.,

$$
C_{\pi}(11)=\pi \upharpoonright_{1}=0, C_{\pi}(1001)=\pi \upharpoonright_{2}=00, C_{\pi}(1011)=\pi \upharpoonright_{3}=001, \ldots \ldots
$$

Thus, by this prescription, Dom C_{π} is made prefix-free, and therefore C_{π} is a computer calculating a prefix of π.

Preliminaries: Program-size Complexity I

Definition For any computer C and any $s \in\{0,1\}^{*}$,

$$
H_{C}(s):=\min \left\{|p| \mid p \in\{0,1\}^{*} \& C(p)=s\right\} .
$$

Example Since $C_{\pi}(\bar{n})=\pi \upharpoonright_{n}$ and therefore C_{π} is a one-to-one function,

$$
H_{C_{\pi}}\left(\left.\pi\right|_{n}\right)=|\bar{n}| \leq 2 \log _{2} n+2 .
$$

Preliminaries: Program-size Complexity II

Definition [optimal computer] A computer U is called optimal if, for each computer C, there exists a constant $d(U, C)$ such that, for every $s \in\{0,1\}^{*}$,

$$
H_{U}(s) \leq H_{C}(s)+d(U, C)
$$

Theorem There exists an optimal computer. (a universal Turing machine)

Definition [program-size complexity]

We choose a particular optimal computer U as a standard one. Then the program-size complexity (or Kolmogorov complexity) H (s) of $s \in\{0,1\}^{*}$ is defined by $H(s):=H_{U}(s)$.

Thus $H(s) \leq H_{C}(s)+d(U, C)$ for all computers C. Therefore, $H(s)$ can achieve the optimal compression of every $s \in\{0,1\}^{*}$, up to an additive constant $d(U, C)$ independent of s.
$\Rightarrow H(s)$: The amount of randomness contained in s, which cannot be captured and cannot be generated in a computational manner.

Example $H\left(\pi \upharpoonright_{n}\right) \leq H_{C_{\pi}}\left(\pi \upharpoonright_{n}\right)+O(1) \leq 2 \log _{2} n+O(1)$ for all n.

Preliminaries: Compression Rate of Real Number I

Definition [the compression rate of a real] Let α be a real.
The limit value

$$
\lim _{n \rightarrow \infty} \frac{H(\alpha\lceil n)}{n}
$$

is called the compression rate of α.
Numerator $H\left(\alpha \upharpoonright_{n}\right)$: The size of compressed $\alpha \upharpoonright_{n}$ by H.
Denominator $n=|\alpha|_{n} \mid$: The original size of $\alpha \upharpoonright_{n}$.

Example

A real D is called computable if there exists an algorithm which calculates each bit in the base-two expansion of D one by one.

- π and e are computable reals.
- Algebraic numbers and therefore rational numbers are computable reals.
- For every computable real $D, H\left(D \upharpoonright_{n}\right) \leq 2 \log _{2} n+O(1)$ for all n. Therefore, the compression rate of every computable real D equals to 0, since

$$
0 \leq \lim _{n \rightarrow \infty} \frac{H\left(D \upharpoonright_{n}\right)}{n} \leq \lim _{n \rightarrow \infty} \frac{2 \log _{2} n+O(1)}{n}=0
$$

Preliminaries: Compression Rate of Real Number II

Definition [Chaitin's halting probability Ω, Chaitin 1975]

$$
\Omega:=\sum_{p \in \operatorname{Dom} U} 2^{-|p|} .
$$

The first n bits of the base-two expansion of Ω (i.e., $\left.\Omega\right|_{n}$) solve the halting problem of U for inputs of length at most n.
Theorem [Chaitin 1975] Ω is incompressible, i.e., the compression rate of Ω equals to 1 .
Remark Since Dom U is prefix-free, $\Omega \leq 1$ by Kraft inequality and, in particular, Ω converges. This is one of the reasons why the domain of definition of a computer is required to be prefix-free.

Example Let $\Omega=0 . b_{1} b_{2} b_{3} b_{4} b_{5} \ldots \ldots$ be the base-two expansion of Ω.
Then consider the real $\bar{\Omega}:=0 . b_{1} \mathrm{Ob}_{2} \mathrm{Ob}_{3} \mathrm{Ob}_{4} \mathrm{Ob}_{5} \mathrm{O} \ldots \ldots$. We can show that

$$
\lim _{n \rightarrow \infty} \frac{H\left(\left.\bar{\Omega}\right|_{n}\right)}{n}=\frac{1}{2}
$$

i.e., the compression rate of $\bar{\Omega}$ equals to $1 / 2$.

Preliminaries: Generalization of Ω

Definition [generalization of Chaitin's Ω, Tadaki 1999]

$$
\Omega(D):=\sum_{p \in \operatorname{Dom} U} 2^{-\frac{|p|}{D}} \quad(D>0)
$$

$\Omega(1)=\Omega$.
The first n bits of the base-two expansion of $\Omega(D)$ (i.e., $\left.\Omega(D) \upharpoonright_{n}\right)$ solve the halting problem of U for inputs of length at most $D n$.

Theorem [Tadaki 1999] Let D be a real.
(i) If $0<D \leq 1$ and D is computable, then

$$
\lim _{n \rightarrow \infty} \frac{H\left(\Omega(D) \upharpoonright_{n}\right)}{n}=D
$$

i.e., the compression rate of $\Omega(D)$ equals to D.
(ii) If $1<D$, then $\Omega(D)$ diverges to ∞.

Motivation

[Calude \& Stay, Information and Computation 204 (2006)] pointed out that $\Omega(D)$ is similar to a partition function in statistical mechanics.

- In statistical mechanics, the partition function Z is given as:

$$
Z=\sum_{n} e^{-\frac{E_{n}}{k T}}
$$

Here, n denotes the quantum number of an energy eigenstate of a quantum system, E_{n} its energy, and T temperature.

- On the other hand, $\Omega(D)$ is given as:

$$
\Omega(D)=\sum_{p \in \operatorname{Dom} U} 2^{-\frac{|p|}{D}} \quad(D>0)
$$

Thus, Z coincides with $\Omega(D)$ by performing the following replacements:
An energy eigenstate $n \Rightarrow$ A program $p \in \operatorname{Dom} U$,
The energy E_{n} of $n \quad \Rightarrow$ The length $|p|$ of p,
Temperature T
Boltzmann constant $k \quad \Rightarrow 1 / \ln 2$.

What is the partition function in statistical mechanics ?

Quick Review of Statistical Mechanics

Quick Review of Statistical Mechanics (I)
Consider a quantum system Q at constant temperature T.
Namely, consider a quantum system Q in thermal contact with a very large quantum system Q_{R}, called heat reservoir, whose temperature is T.

Let $Q_{\text {total }}$ be the total quantum system consisting of Q and Q_{R}.

Quick Review of Statistical Mechanics (II)

Basic Ingredients in Statistical Mechanics

- In quantum mechanics, any quantum system is described by a quantum state completely.
- In statistical mechanics, among all quantum states, energy eigenstates are of particular importance.
- An energy eigenstate of a quantum system is specified by a number $n=1,2,3, \ldots$, called a quantum number.

Thus the energy of a quantum system is assumed to take discrete values. We identify a quantum number with the corresponding energy eigenstate.

- If a quantum system is in the energy eigenstate, then the quantum system has a definite energy.

Quick Review of Statistical Mechanics (III)

Definition [(Statistical Mechanical) Entropy]

The entropy $S(E)$ of a quantum system with energy E is defined by

$$
S(E):=k \ln \Theta(E)
$$

Here, $\Theta(E)$ is the number of energy eigenstates whose energy E^{\prime} satisfies that

$$
E \leq E^{\prime} \leq E+\delta E
$$

where δE is the indeterminacy in measurement of the energy of the quantum system. The proportional constant k is called the Boltzmann constant.

Definition [Temperature]

The temperature T of a quantum system with energy E is defined by

$$
\frac{1}{T}=\frac{\partial S}{\partial E}(E)
$$

Note that the above definitions apply to each of the quantum systems Q, Q_{R}, and $Q_{\text {total }}$.

Quick Review of Statistical Mechanics (IV)
The fundamental postulate of statistical mechanics is stated as follows for the total quantum system $Q_{\text {total }}$:

The Principle of Equal Probability

If the energy of the quantum system $Q_{\text {total }}$ is known to have a constant value between E and $E+\delta E$;

$$
E \leq\left(\text { The energy of } Q_{\text {total }}\right) \leq E+\delta E
$$

then the quantum system $Q_{\text {total }}$ is equally likely to be in any energy eigenstate whose energy E^{\prime} satisfies that

$$
E \leq E^{\prime} \leq E+\delta E
$$

Here, δE is the indeterminacy in measurement of the energy of the quantum system $Q_{\text {total }}$.

Quick Review of Statistical Mechanics (V)
Let us calculate the probability $\operatorname{Prob}(n)$ that the quantum system Q is in an energy eigenstate n with energy E_{n}, based on the Principle of Equal Probability for the total quantum system $Q_{\text {total }}$ with the total energy E.

By the Principle of Equal Probability, $\operatorname{Prob}(n)$ is proportinal to the number $\Theta_{\mathrm{R}}\left(E-E_{n}\right)$ of the energy eigenstates allowable in the heat reservoir Q_{R} with the energy $E-E_{n}$.

Using (i) the definition $S_{\mathrm{R}}(E)=k \ln \Theta_{\mathrm{R}}(E)$ of the entropy of the heat reservoir Q_{R} (ii) the definition $1 / T=\frac{\partial S_{\mathrm{R}}}{\partial E}(E)$ of the heat reservoir Q_{R}, and (iii) the fact that $E_{n} \ll E$, we have the following result:

Quick Review of Statistical Mechanics (VI)
As a result of the principle of equal probability, we can show the following for the quantum system Q (and not for $Q_{\text {total }}$):
Result of the Principle of Equal Probability
The probability $\operatorname{Prob}(n)$ that the quantum system Q is in an energy eigenstate n with energy E_{n} is given as:

$$
\operatorname{Prob}(n)=\frac{1}{Z} e^{-\frac{E_{n}}{k T}} .
$$

Here, the normalization factor $Z:=\sum_{n} e^{-\frac{E_{n}}{k T}}$ is called the partition function of the quantum system. The distribution $\operatorname{Prob}(n)$ is called the canonical distribution.

The partition function Z is of particular importance in statistical mechanics, because all the thermodynamic quantities of the quantum system can be expressed by using the partition function Z, and the knowledge of Z is sufficient to understand all the macroscopic properties of the system.

Thermodynamic Quantities of the quantum system Q at temperature T

- Energy $\quad E=\sum_{n} E_{n} \operatorname{Prob}(n)=\frac{1}{Z} \sum_{n} E_{n} e^{-\frac{E_{n}}{k T}}=k T^{2} \frac{d}{d T} \ln Z$.

The energy E of the quantum system Q is the expected value of an energy E_{n} of an energy eigenstate n of the quantum system Q at temperature T.

- Free Energy $F=-k T \ln Z$.

The free energy F of the quantum system Q is related to the work performed by the system during a process at constant temperature T.

- (Statistical Mechanical) Entropy $S=\frac{E-F}{T}$.

Note that the entropy S of the system Q equals to the Shannon entropy of the probability distribution $\{\operatorname{Prob}(n)\}$, i.e., $S=-k \sum_{n} \operatorname{Prob}(n) \ln \operatorname{Prob}(n)$.

- Specific Heat $\quad C=\frac{d E}{d T}$.

Aim of this talk

We propose a statistical mechanical interpretation of AIT (Algorithmic Information Theory) where $\Omega(D)$ appears as a partition function.
We do this in the following manner:
We introduce the notion of thermodynamic quantities such as free energy, energy, (statistical mechanical) entropy, and specific heat into AIT by performing the following replacements for the corresponding thermodynamic quantities of a quantum system at temperature T obeying the canonical distribution:

$$
\begin{array}{ll}
\text { An energy eigenstate } n & \Rightarrow \text { A program } p \in \operatorname{Dom} U, \\
\text { The energy } E_{n} \text { of } n & \Rightarrow \text { The length }|p| \text { of } p, \\
\text { Boltzmann constant } k & \Rightarrow 1 / \ln 2 .
\end{array}
$$

We then determine the convergence or divergence of each of the quantities. In the case where a thermodynamic quantity converges, we calculate the compression rate of the value of the thermodynamic quantity, based on program-size complexity $H(s)$.
\Rightarrow We see that all of the compression rate of the thermodynamic quantities, which include temperature T itself, equal to T.

Immediate Application of the Replacements: Transient Definitions
Perform the following replacements for the corresponding thermodynamic quantities of a quantum system at temperature T. (U : optimal computer)

An energy eigenstate $n \quad \Rightarrow$ A program $p \in \operatorname{Dom} U$,
The energy E_{n} of $n \quad \Rightarrow$ The length $|p|$ of p,
Boltzmann constant $k \Rightarrow 1 / \ln 2$. Boltzmann factor: $2^{-\frac{|p|}{T}}$
Partition function $Z(T)=\sum_{n} e^{-\frac{E_{n}}{k T}} \Rightarrow Z(T)=\sum_{p \in \operatorname{Dom} U} 2^{-\frac{|p|}{T}}$,
Free energy $F(T)=-k T \ln Z(T) \quad \Rightarrow \quad F(T)=-T \log _{2} Z(T)$,
Energy $E(T)=\frac{1}{Z(T)} \sum_{n} E_{n} e^{-\frac{E_{n}}{k T}} \quad \Rightarrow \quad E(T)=\frac{1}{Z(T)} \sum_{p \in \operatorname{Dom} U}|p| 2^{-\frac{|p|}{T}}$,
Entropy $S(T)=\frac{E(T)-F(T)}{T} \Rightarrow S(T)=\frac{E(T)-F(T)}{T}$,
Specific heat $\quad C(T)=\frac{d}{d T} E(T) \quad \Rightarrow \quad C(T)=\frac{d}{d T} E(T)$.

Thermodynamic Quantities in AIT: Rigorous Definitions
Redefine the transient definitions rigorously as follows.
Definition Let $q_{1}, q_{2}, q_{3}, \ldots \ldots$ be an arbitrary enumeration of Dom U. Note that the results of this talk are independent of the choice of $\left\{q_{i}\right\}$.
Definition [Thermodynamic Quantities in AIT, Tadaki 2008] Let $T>0$.
(i) partition function $Z(T):=\lim _{m \rightarrow \infty} Z_{m}(T)$, where $Z_{m}(T)=\sum_{i=1}^{m} 2^{-\frac{\left|q_{i}\right|}{T}}$.
(ii) free energy $F(T):=\lim _{m \rightarrow \infty} F_{m}(T)$, where $F_{m}(T)=-T \log _{2} Z_{m}(T)$.
(ii) energy $E(T):=\lim _{m \rightarrow \infty} E_{m}(T)$, where $E_{m}(T)=\frac{1}{Z_{m}(T)} \sum_{i=1}^{m}\left|q_{i}\right| 2^{-\frac{\left|q_{i}\right|}{T}}$.
(iii) entropy $S(T):=\lim _{m \rightarrow \infty} S_{m}(T)$, where $S_{m}(T)=\frac{E_{m}(T)-F_{m}(T)}{T}$.
(iv) specific heat $C(T):=\lim _{m \rightarrow \infty} C_{m}(T)$, where $C_{m}(T)=E_{m}^{\prime}(T)$.

Remark These are variants of Chaitin's Ω. In particular, $Z(T)=\Omega(T)$.

Compression Rate $=$ Temperature

Thermodynamic Quantities in AIT: Randomness Property
Theorem [randomness property, Tadaki, CiE 2008] Let T be a real.
(i) If $0<T<1$ and T is computable, then each of $Z(T), F(T), E(T), S(T)$, and $C(T)$ converges to a real whose compression rate equals to T, i.e.,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{H\left(Z(T) \upharpoonright_{n}\right)}{n}=\lim _{n \rightarrow \infty} \frac{H\left(F(T) \upharpoonright_{n}\right)}{n}=T \\
\lim _{n \rightarrow \infty} \frac{H\left(E(T) \upharpoonright_{n}\right)}{n}=\lim _{n \rightarrow \infty} \frac{H\left(S(T) \upharpoonright_{n}\right)}{n}=\lim _{n \rightarrow \infty} \frac{H\left(C(T) \upharpoonright_{n}\right)}{n}=T
\end{gathered}
$$

(ii) If $1<T$, then $Z(T), E(T)$, and $S(T)$ diverge to ∞, and $F(T)$ diverges to $-\infty$.
(iii) In the case of $T=1, C(T)$ diverge to ∞.

In the case of $T>1$, it is still open whether $C(T)$ diverges or not.
Implication of (i): The compression rate of the values of all the thermodynamic quantities equals to the temperature T.
Thermodynamic Interpretation of (ii) and (iii): "Phase Transition" occurs at temperature 1.

Thermodynamic Quantities in AIT: Remark
Remark [Specific Nature of Thermodynamic Quantities in AIT]
The definitions of the thermodynamic quantities in AIT involve the Boltzmann factor $2^{-|p| / T}$. For example, for every $T \in(0,1)$,

$$
\begin{aligned}
& E(T)=\frac{\sum_{i=1}^{\infty}\left|q_{i}\right| 2^{-\left|q_{i}\right| / T}}{\sum_{i=1}^{\infty} 2^{-\left|q_{i}\right| / T}} \\
& C(T)=\frac{d}{d T} E(T)=\frac{\ln 2}{T^{2}}\left\{\frac{\sum_{i=1}^{\infty}\left|q_{i}\right|^{2} 2^{-\left|q_{i}\right| / T}}{\sum_{i=1}^{\infty} 2^{-\left|q_{i}\right| / T}}-\left(\frac{\sum_{i=1}^{\infty}\left|q_{i}\right| 2^{-\left|q_{i}\right| / T}}{\sum_{i=1}^{\infty} 2^{-\left|q_{i}\right| / T}}\right)^{2}\right\}
\end{aligned}
$$

However, note that the compression rate of every function of T involving the Boltzmann factor $2^{-\frac{|p|}{T}}$ does not necessarily equals to T.

To see this, consider the following quantity $\bar{Z}(T)$ which is artificial from the point of view of statistical mechanics:

$$
\bar{Z}(T):=\sum_{i=1}^{\infty}\left(2^{-\frac{\left|q_{i}\right|}{T}}\right)^{2}
$$

Since $\bar{Z}(T)=Z(T / 2)$, we see that, for every $T \in(0,1)$, if T is computable then the compression rate of $\bar{Z}(T)$ equals to $T / 2$ and not to T.

Temperature \Rightarrow Fixed Point Theorems

In the case where T is computable with $0<T<1$, all of the compression rate of the thermodynamic quantities:
partition function $Z(T)$, free energy $F(T)$,
energy $E(T)$, entropy $S(T)$, and specific heat $C(T)$,
equal to the temperature T.
However,
one of the most typical thermodynamic quantities is temperature T itself.
Thus, the following question arises naturally:
Question Can the compression rate of the temperature equal to the
temperature itself ? Self-referential Question

We can answer this question affirmatively in the following form:

Fixed Point Theorem on Compression Rate: Main Theorem
Theorem [fixed point theorem on compression rate, Tadaki, CiE 2008]
For every $T \in(0,1)$, if $Z(T)$ is a computable real, then

$$
\lim _{n \rightarrow \infty} \frac{H\left(T \Gamma_{n}\right)}{n}=T
$$

i.e., the compression rate of T equals to T itself.

Intuitive Meaning; Metaphor
Consider a file of infinite size whose content is
"The compression rate of this file is $0.100111001 \ldots .$. ."
When this file is compressed, the compression rate of this file actually equals to $0.100111001 \ldots \ldots$, as the content of this file says.

This situation forms a fixed point and is self-referential !

Theorem [fixed point theorem on compression rate] [posted again]
For every $T \in(0,1)$, if $Z(T)$ is computable, then $\lim _{n \rightarrow \infty} H\left(T \Gamma_{n}\right) / n=T$.
Note that $Z(T)=\sum_{i=1}^{\infty} 2^{-\left|q_{i}\right| / T}$ is a strictly increasing continuous function of $T \in(0,1)$, and the set of all computable reals is dense in \mathbb{R}. Thus,
Theorem The set $\{T \in(0,1) \mid Z(T)$ is computable $\}$ is dense in $(0,1)$.
Corollary [density of the fixed points]
The set $\left\{T \in(0,1) \mid \lim _{n \rightarrow \infty} H\left(T \upharpoonright_{n}\right) / n=T\right\}$ is dense in $(0,1)$.

At this point, the following question would arise naturally:
Question Is this sufficient condition, i.e., the computability of $Z(T)$, also necessary for T to be a fixed point ?

Answer Completely not !! (as we can see through the following argument)

Thermodynamic Quantities in AIT: Fixed Point Theorems

In the fixed point theorem, $Z(T)$ can be replaced by each of the thermodynamic quantities $F(T), E(T)$, and $S(T)$ as follows.

Theorem [fixed point theorem by the free energy $F(T)$, Tadaki, LFCS'09] For every $T \in(0,1)$, if $F(T)$ is computable, then

$$
\lim _{n \rightarrow \infty} \frac{H\left(T \upharpoonright_{n}\right)}{n}=T
$$

Theorem [fixed point theorem by the energy $E(T)$, Tadaki, LFCS'09] For every $T \in(0,1)$, if $E(T)$ is computable, then

$$
\lim _{n \rightarrow \infty} \frac{H\left(T \upharpoonright_{n}\right)}{n}=T
$$

Theorem [fixed point theorem by the entropy $S(T)$, Tadaki, LFCS'09] For every $T \in(0,1)$, if $S(T)$ is computable, then

$$
\lim _{n \rightarrow \infty} \frac{H\left(T \upharpoonright_{n}\right)}{n}=T
$$

These fixed point theorems have the exactly same form as one by $Z(T)$.

Relation between the sufficient conditions of FPTs

Theorem [Tadaki, LFCS'09] There does not exist $T \in(0,1)$ such that both $Z(T)$ and $F(T)$ are computable.

Proof)

Contrarily, assume that both $Z(T)$ and $F(T)$ are computable for some $T \in$ $(0,1)$. Since the statistical mechanical relation $F(T)=-T \log _{2} Z(T)$ holds,

$$
T=-\frac{F(T)}{\log _{2} Z(T)} .
$$

Thus, T is computable, and therefore the compression rate of $Z(T)$ equals to T, i.e., $\lim _{n \rightarrow \infty} H\left(\left.Z(T)\right|_{n}\right) / n=T$. This is positive since $T>0$. On the other hand, since $Z(T)$ is computable by the assumption, the compression rate of $Z(T)$ equals to 0 . Thus we have a contradiction.

$$
\begin{gathered}
\{T \in(0,1) \mid Z(T) \text { is computable }\} \cap\{T \in(0,1) \mid F(T) \text { is computable }\}=\emptyset . \\
\text { dense in }(0,1)
\end{gathered}
$$

In particular, this shows that the computability of $Z(T)$ is not a necessary condition for T to be a fixed point in the fixed point theorem by $Z(T)$.

Theorem There does not exist $T \in(0,1)$ such that all of $Z(T), E(T)$, and $S(T)$ are computable.
Proof) Use the statistical mechanical relation

$$
S(T)=\frac{E(T)}{T}+\log _{2} Z(T)
$$

Theorem There does not exist $T \in(0,1)$ such that all of $F(T), E(T)$, and $S(T)$ are computable.
Proof) Use the thermodynamic relation

$$
S(T)=\frac{E(T)-F(T)}{T}
$$

Temperature $=$ Compression Rate.

Remark: Physical Implication of the Results

Definition Let $q_{1}, q_{2}, q_{3}, \ldots \ldots$ be an arbitrary enumeration of Dom U.
In the statistical mechanical interpretation of AIT,
$q_{1}, q_{2}, q_{3}, \ldots \ldots$ correspond to energy eigenstates of a quantum system and $\left|q_{1}\right|,\left|q_{2}\right|,\left|q_{3}\right|, \ldots \ldots$ correspond to energy eigenvalues of the quantum system with degeneracy.

Theorem [distribution of programs (i.e., "energy eigenstates"), Solovay]

$$
\#\{p|p \in \operatorname{Dom} U \&| p \mid \leq n\}=2^{n-H(n)+O(1)} \text { for all } n \in \mathbb{N}
$$

(In statistical mechanics, this quantity is "the number of states below energy $n^{\prime \prime}$)
Here $H(n)=H$ (the base-two representation of n).

If the energy eigenvalues of a quantum system distribute according to the above distribution, then the following situation can realize:

If T is a computable real, the compression rate of the values of thermodynamic quantities at temperature T equals to T in the quantum system.

Remark: Mathematical Implication of the Results

The proofs of the fixed point theorems on compression rate by $F(T), E(T)$, and $S(T)$ depend heavily on the following thermodynamic relations:

Lemma [thermodynamic relations] $T \in(0,1)$.
(i) $F_{m}^{\prime}(T)=-S_{m}(T), E_{m}^{\prime}(T)=C_{m}(T)$, and $S_{m}^{\prime}(T)=C_{m}(T) / T$.
(ii) $F^{\prime}(T)=-S(T), E^{\prime}(T)=C(T)$, and $S^{\prime}(T)=C(T) / T$.
(iii) $S_{m}(T), C_{m}(T) \geq 0$. $S_{m}(T), C_{m}(T)>0$ for all sufficiently large k.

$$
S(T), C(T)>0 .
$$

Moreover, the proof of the following theorem depends on the statistical mechanical relation $F(T)=-T \log _{2} Z(T)$.

Theorem There does not exist $T \in(0,1)$ such that both $Z(T)$ and $F(T)$ are computable.
This theorem says that the computability of $F(T)$ gives completely different fixed points from the computability of $Z(T)$.

These fact would imply that the analytic method can be used in the research of AIT (algorithmic randomness).

Bibliography

K. Tadaki. A statistical mechanical interpretation of algorithmic information theory. Local Proceedings of CiE 2008, pp.425-434, 2008.
Extended Version Available at arXiv:0801.4194
K. Tadaki. Fixed point theorems on partial randomness. Proc. LFCS'09, Springer's LNCS, Vol.5407, pp.422-440, 2009.
K. Tadaki. A statistical mechanical interpretation of algorithmic information theory III: Composite systems and fixed points. To appear in Proc. ITW 2009 - Taormina, 2009.

