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Abstract: What we will do in this talk U : universal Turing machine.

Algorithmic Information Theory (AIT, for short) is a theory of program-size.
In this talk, we introduce the notion of thermodynamic quantities into AIT
by performing the following replacements for the thermodynamic quantities
of a quantum system at temperature T obeying the canonical distribution.
We then investigate their randomness properties.

An energy eigenstate n ⇒ A program p of U ,

The energy En of n ⇒ The length |p| of p,

Boltzmann constant k ⇒ 1/ ln 2. Boltzmann factor: 2−|p|
T

Partition function Z(T ) =
∑
n

e−
En
kT ⇒ Z(T ) =

∑
p

2−|p|
T ,

Free energy F (T ) = −kT lnZ(T ) ⇒ F (T ) = −T log2 Z(T ),

Energy E(T ) =
1

Z(T )

∑
n

Ene−
En
kT ⇒ E(T ) =

1

Z(T )

∑
p

|p|2−|p|
T ,

Entropy S(T ) =
E(T ) − F (T )

T
⇒ S(T ) =

E(T ) − F (T )

T
.
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Temperature = Compression Rate.
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Preliminaries: Prefix-free Sets

• {0,1}∗ := {λ,0,1,00,01,10,11,000,001,010,011, . . . }
The set of finite binary strings

Here, λ denotes the empty string.

• For any s ∈ {0,1}∗, |s| denotes the length of s.

For example |010| = 3, |λ| = 0.

• Let P be a subset of {0,1}∗. We say P is prefix-free if for any distinct s

and t ∈ P , s is not a prefix of t.

For example {0,10}: prefix-free.
{0,01}: not prefix-free.

• A prefix-free set can be finite and can be infinite.

• For every prefix-free set P ⊂ {0,1}∗,∑
s∈P

2−|s| ≤ 1. (Kraft inequality)
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Preliminaries: Prefix of Real Number

Definition [a prefix of a real]

Let α be a real, and let n be a positive integer.

We denote by α¹n the first n bits of the base-two expansion of α − bαc.
The fractional part of α.

Example [circle ratio]

Consider the case of α = π, the circle ratio.

π = 11.001001000011111101 . . . . . .

in base-two notation.

Therefore, the fractional part of π,

π − bπc = .001001000011111101 . . . . . .

in base-two notation.

Thus,

π¹1= 0, π¹2= 00, π¹3= 001, π¹4= 0010, . . . . . .

These are finite binary strings.
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Preliminaries: Partial Recursive Functions – Definition

Definition [Partial recursive function]

We say f is a partial recursive function if the following two hold for f :

(i) There exists a subset V of {0,1}∗ such that f : V → {0,1}∗,
where V is the domain of definition of f and denoted by Dom f .

(ii) There exists an algorithm A such that, for each s ∈ {0,1}∗,
when executing A with the input s,

if s ∈ Dom f then the computation of A terminates and outputs f(s);

if s /∈ Dom f then the computation of A does not terminate.

Here, we can regard an algorithm, for example, as a program written by the

programing language C.
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Preliminaries: Partial Recursive Functions – Example

Example [a partial recursive function calculating a prefix of π]

We define the function fπ : Vπ → {0,1}∗ by the conditions that

(i) For every positive integer n,

fπ(the base-two representation of n) = π¹n,

i.e.,

fπ(1) = π¹1= 0, fπ(10) = π¹2= 00, fπ(11) = π¹3= 001, . . . . . .

(ii) Dom fπ(= Vπ) is the set of the base-two representations of all positive

integers, i.e., Dom fπ = {1,10,11,100,101,110,111,1000, . . . }.

Obviously, there exists an algorithm Aπ such that, given the base-two rep-

resentation of a positive integer n as an input, the computation of Aπ

terminates and outputs π¹n.

For any s /∈ Dom fπ, Aπ with the input s can be made unterminated, for

example, by writing the code while(1); on an appropriate place of the pro-

gram in the case of C.

Thus, fπ is a partial recursive function.
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Preliminaries: Computers

Definition [computer] A partial recursive function C is called a computer

if DomC is a prefix-free set.

Example

The partial recursive function fπ is not a computer because 1, 10 ∈ Dom fπ =

{1,10,11,100,101,110, . . . }.

A computer Cπ calculating a prefix of π is constructed as follows:

Let 1b1b2 . . . bl−1bl be the base-two representation of any positive integer n,

where bi = 0 or 1. Then define n := 10b10b20 . . . bl−10bl1.

We define the function Cπ by the condition that,

for every positive integer n, Cπ(n) = π¹n, i.e.,

Cπ(11) = π¹1= 0, Cπ(1001) = π¹2= 00, Cπ(1011) = π¹3= 001, . . . . . .

Thus, by this prescription, DomCπ is made prefix-free, and therefore Cπ is

a computer calculating a prefix of π.
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Preliminaries: Program-size Complexity I

Definition For any computer C and any s ∈ {0,1}∗,

HC(s) := min
{
|p|

∣∣∣ p ∈ {0,1}∗ & C(p) = s
}

.

Example Since Cπ(n) = π¹n and therefore Cπ is a one-to-one function,

HCπ(π¹n) = |n| ≤ 2 log2 n + 2.
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Preliminaries: Program-size Complexity II

Definition [optimal computer] A computer U is called optimal if, for each

computer C, there exists a constant d(U, C) such that, for every s ∈ {0,1}∗,

HU(s) ≤ HC(s) + d(U, C).

Theorem There exists an optimal computer. (a universal Turing machine)

Definition [program-size complexity]

We choose a particular optimal computer U as a standard one. Then the
program-size complexity (or Kolmogorov complexity) H(s) of s ∈ {0,1}∗ is
defined by H(s) := HU(s).

Thus H(s) ≤ HC(s) + d(U, C) for all computers C. Therefore, H(s) can
achieve the optimal compression of every s ∈ {0,1}∗, up to an additive con-
stant d(U, C) independent of s.
⇒ H(s): The amount of randomness contained in s, which cannot be
captured and cannot be generated in a computational manner.

Example H(π¹n) ≤ HCπ(π¹n) + O(1) ≤ 2 log2 n + O(1) for all n.
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Preliminaries: Compression Rate of Real Number I

Definition [the compression rate of a real] Let α be a real.

The limit value

lim
n→∞

H(α¹n)

n

is called the compression rate of α.

Numerator H(α¹n): The size of compressed α¹n by H.
Denominator n = |α¹n|: The original size of α¹n.

Example

A real D is called computable if there exists an algorithm which calculates
each bit in the base-two expansion of D one by one.

• π and e are computable reals.
• Algebraic numbers and therefore rational numbers are computable reals.
• For every computable real D, H(D¹n) ≤ 2 log2 n + O(1) for all n. There-
fore, the compression rate of every computable real D equals to 0, since

0 ≤ lim
n→∞

H(D¹n)

n
≤ lim

n→∞
2 log2 n + O(1)

n
= 0.
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Preliminaries: Compression Rate of Real Number II

Definition [Chaitin’s halting probability Ω, Chaitin 1975]

Ω :=
∑

p∈DomU

2−|p|.

The first n bits of the base-two expansion of Ω (i.e., Ω¹n) solve the halting
problem of U for inputs of length at most n.

Theorem [Chaitin 1975] Ω is incompressible, i.e., the compression rate of

Ω equals to 1.

Remark Since DomU is prefix-free, Ω ≤ 1 by Kraft inequality and, in

particular, Ω converges. This is one of the reasons why the domain of
definition of a computer is required to be prefix-free.

Example Let Ω = 0.b1b2b3b4b5 . . . . . . be the base-two expansion of Ω.

Then consider the real Ω := 0.b10b20b30b40b50 . . . . . . . We can show that

lim
n→∞

H(Ω¹n)

n
=

1

2
,

i.e., the compression rate of Ω equals to 1/2.
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Preliminaries: Generalization of Ω

Definition [generalization of Chaitin’s Ω, Tadaki 1999]

Ω(D) :=
∑

p∈DomU

2−
|p|
D (D > 0).

Ω(1) = Ω.

The first n bits of the base-two expansion of Ω(D) (i.e., Ω(D)¹n) solve the

halting problem of U for inputs of length at most Dn.

Theorem [Tadaki 1999] Let D be a real.

(i) If 0 < D ≤ 1 and D is computable, then

lim
n→∞

H(Ω(D)¹n)

n
= D,

i.e., the compression rate of Ω(D) equals to D.

(ii) If 1 < D, then Ω(D) diverges to ∞.
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Motivation

[Calude & Stay, Information and Computation 204 (2006)] pointed out that
Ω(D) is similar to a partition function in statistical mechanics.

• In statistical mechanics, the partition function Z is given as:

Z =
∑
n

e−
En
kT .

Here, n denotes the quantum number of an energy eigenstate of a quantum
system, En its energy, and T temperature.

• On the other hand, Ω(D) is given as:

Ω(D) =
∑

p∈DomU

2−
|p|
D (D > 0).

Thus, Z coincides with Ω(D) by performing the following replacements:

An energy eigenstate n ⇒ A program p ∈ DomU ,

The energy En of n ⇒ The length |p| of p,

Temperature T ⇒ Compression rate D,

Boltzmann constant k ⇒ 1/ ln 2.
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What is the partition function in statistical mechanics ?

Quick Review of Statistical Mechanics
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Quick Review of Statistical Mechanics (I)

Consider a quantum system Q at constant temperature T .

Namely, consider a quantum system Q in thermal contact with a very large

quantum system QR, called heat reservoir, whose temperature is T .

Q Heat Reservoir QR
Temperature: T

Let Qtotal be the total quantum system consisting of Q and QR.
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Quick Review of Statistical Mechanics (II)

Basic Ingredients in Statistical Mechanics

• In quantum mechanics,

any quantum system is described by a quantum state completely.

• In statistical mechanics,

among all quantum states, energy eigenstates are of particular importance.

• An energy eigenstate of a quantum system is specified by a number

n = 1,2,3, . . . , called a quantum number.

Thus the energy of a quantum system is assumed to take discrete values.

We identify a quantum number with the corresponding energy eigenstate.

• If a quantum system is in the energy eigenstate, then the quantum system

has a definite energy.
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Quick Review of Statistical Mechanics (III)

Definition [(Statistical Mechanical) Entropy]

The entropy S(E) of a quantum system with energy E is defined by

S(E) := k lnΘ(E).

Here, Θ(E) is the number of energy eigenstates whose energy E′ satisfies
that

E ≤ E′ ≤ E + δE,

where δE is the indeterminacy in measurement of the energy of the quantum
system. The proportional constant k is called the Boltzmann constant.

Definition [Temperature]

The temperature T of a quantum system with energy E is defined by

1

T
=

∂S

∂E
(E).

Note that the above definitions apply to each of the quantum systems Q,
QR, and Qtotal.
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Quick Review of Statistical Mechanics (IV)

The fundamental postulate of statistical mechanics is stated as follows for

the total quantum system Qtotal:

The Principle of Equal Probability

If the energy of the quantum system Qtotal is known to have a constant

value between E and E + δE;

E ≤ (The energy of Qtotal) ≤ E + δE,

then the quantum system Qtotal is equally likely to be in any energy eigen-

state whose energy E′ satisfies that

E ≤ E′ ≤ E + δE.

Here, δE is the indeterminacy in measurement of the energy of the quantum

system Qtotal.

19



Quick Review of Statistical Mechanics (V)

Let us calculate the probability Prob(n) that the quantum system Q is in
an energy eigenstate n with energy En, based on the Principle of Equal
Probability for the total quantum system Qtotal with the total energy E.

Q

Energy: En

Heat Reservoir QR
Energy : E − En

(by the law of the conservation of energy)

By the Principle of Equal Probability, Prob(n) is proportinal to the number
ΘR(E − En) of the energy eigenstates allowable in the heat reservoir QR
with the energy E − En.

Using (i) the definition SR(E) = k lnΘR(E) of the entropy of the heat
reservoir QR (ii) the definition 1/T = ∂SR

∂E (E) of the heat reservoir QR, and
(iii) the fact that En ¿ E, we have the following result:
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Quick Review of Statistical Mechanics (VI)

As a result of the principle of equal probability, we can show the following

for the quantum system Q (and not for Qtotal):

Result of the Principle of Equal Probability

The probability Prob(n) that the quantum system Q is in an energy eigen-

state n with energy En is given as:

Prob(n) =
1

Z
e−

En
kT .

Here, the normalization factor Z :=
∑
n

e−
En
kT is called the partition function

of the quantum system. The distribution Prob(n) is called the canonical

distribution.

The partition function Z is of particular importance in statistical mechan-

ics, because all the thermodynamic quantities of the quantum system can

be expressed by using the partition function Z, and the knowledge of Z is

sufficient to understand all the macroscopic properties of the system.
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Quick Review of Statistical Mechanics (VII)

Thermodynamic Quantities of the quantum system Q at temperature T

• Energy E =
∑
n

En Prob(n) =
1

Z

∑
n

Ene−
En
kT = kT2 d

dT
lnZ.

The energy E of the quantum system Q is the expected value of an energy
En of an energy eigenstate n of the quantum system Q at temperature T .

• Free Energy F = −kT lnZ.

The free energy F of the quantum system Q is related to the work performed
by the system during a process at constant temperature T .

• (Statistical Mechanical) Entropy S =
E − F

T
.

Note that the entropy S of the system Q equals to the Shannon entropy of
the probability distribution {Prob(n)}, i.e., S = −k

∑
n

Prob(n) lnProb(n).

• Specific Heat C =
dE

dT
.
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Aim of this talk

We propose a statistical mechanical interpretation of AIT (Algorithmic In-
formation Theory) where Ω(D) appears as a partition function.

We do this in the following manner:
We introduce the notion of thermodynamic quantities such as free energy,
energy, (statistical mechanical) entropy, and specific heat into AIT by per-
forming the following replacements for the corresponding thermodynamic
quantities of a quantum system at temperature T obeying the canonical
distribution:

An energy eigenstate n ⇒ A program p ∈ DomU ,

The energy En of n ⇒ The length |p| of p,

Boltzmann constant k ⇒ 1/ ln 2.

We then determine the convergence or divergence of each of the quantities.
In the case where a thermodynamic quantity converges, we calculate the
compression rate of the value of the thermodynamic quantity, based on
program-size complexity H(s).

⇒ We see that all of the compression rate of the thermodynamic quan-
tities, which include temperature T itself, equal to T .
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Immediate Application of the Replacements: Transient Definitions

Perform the following replacements for the corresponding thermodynamic
quantities of a quantum system at temperature T . (U : optimal computer)

An energy eigenstate n ⇒ A program p ∈ DomU ,

The energy En of n ⇒ The length |p| of p,

Boltzmann constant k ⇒ 1/ ln 2. Boltzmann factor: 2−|p|
T

Partition function Z(T ) =
∑
n

e−
En
kT ⇒ Z(T ) =

∑
p∈DomU

2−|p|
T ,

Free energy F (T ) = −kT lnZ(T ) ⇒ F (T ) = −T log2 Z(T ),

Energy E(T ) =
1

Z(T )

∑
n

Ene−
En
kT ⇒ E(T ) =

1

Z(T )

∑
p∈DomU

|p|2−|p|
T ,

Entropy S(T ) =
E(T ) − F (T )

T
⇒ S(T ) =

E(T ) − F (T )

T
,

Specific heat C(T ) =
d

dT
E(T ) ⇒ C(T ) =

d

dT
E(T ).

24



Thermodynamic Quantities in AIT: Rigorous Definitions

Redefine the transient definitions rigorously as follows.

Definition Let q1, q2, q3, . . . . . . be an arbitrary enumeration of DomU .

Note that the results of this talk are independent of the choice of {qi}.

Definition [Thermodynamic Quantities in AIT, Tadaki 2008] Let T > 0.

(i) partition function Z(T ) := lim
m→∞Zm(T ), where Zm(T ) =

m∑
i=1

2−
|qi|
T .

(ii) free energy F (T ) := lim
m→∞Fm(T ), where Fm(T ) = −T log2 Zm(T ).

(ii) energy E(T ) := lim
m→∞Em(T ), where Em(T ) =

1

Zm(T )

m∑
i=1

|qi|2−|qi|
T .

(iii) entropy S(T ) := lim
m→∞Sm(T ), where Sm(T ) =

Em(T ) − Fm(T )

T
.

(iv) specific heat C(T ) := lim
m→∞Cm(T ), where Cm(T ) = E′

m(T ).

Remark These are variants of Chaitin’s Ω. In particular, Z(T ) = Ω(T ).
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Compression Rate = Temperature.

26



Thermodynamic Quantities in AIT: Randomness Property

Theorem [randomness property, Tadaki, CiE 2008] Let T be a real.

(i) If 0 < T < 1 and T is computable, then each of Z(T ), F (T ), E(T ), S(T ),
and C(T ) converges to a real whose compression rate equals to T , i.e.,

lim
n→∞

H(Z(T )¹n)

n
= lim

n→∞
H(F (T )¹n)

n
= T,

lim
n→∞

H(E(T )¹n)

n
= lim

n→∞
H(S(T )¹n)

n
= lim

n→∞
H(C(T )¹n)

n
= T.

(ii) If 1 < T , then Z(T ), E(T ), and S(T ) diverge to ∞, and F (T ) diverges
to −∞.
(iii) In the case of T = 1, C(T ) diverge to ∞.

In the case of T > 1, it is still open whether C(T ) diverges or not.

Implication of (i): The compression rate of the values of all the thermo-
dynamic quantities equals to the temperature T .
Thermodynamic Interpretation of (ii) and (iii): “Phase Transition” occurs
at temperature 1.
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Thermodynamic Quantities in AIT: Remark

Remark [Specific Nature of Thermodynamic Quantities in AIT]

The definitions of the thermodynamic quantities in AIT involve the Boltz-
mann factor 2−|p|/T . For example, for every T ∈ (0,1),

E(T ) =

∑∞
i=1 |qi|2−|qi|/T∑∞

i=1 2−|qi|/T
,

C(T ) =
d

dT
E(T ) =

ln2

T2


∑∞

i=1 |qi|2 2−|qi|/T∑∞
i=1 2−|qi|/T

−

∑∞
i=1 |qi|2−|qi|/T∑∞

i=1 2−|qi|/T

2
 .

However, note that the compression rate of every function of T involving

the Boltzmann factor 2−|p|
T does not necessarily equals to T .

To see this, consider the following quantity Z̄(T ) which is artificial
from the point of view of statistical mechanics:

Z̄(T ) :=
∞∑

i=1

(
2−|qi|

T

)2

.

Since Z̄(T ) = Z(T/2), we see that, for every T ∈ (0,1), if T is computable
then the compression rate of Z̄(T ) equals to T/2 and not to T .
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Thermodynamic Quantities in AIT: Temperature

Temperature ⇒ Fixed Point Theorems

In the case where T is computable with 0 < T < 1,

all of the compression rate of the thermodynamic quantities:

partition function Z(T ), free energy F (T ),

energy E(T ), entropy S(T ),and specific heat C(T ),

equal to the temperature T .

However,

one of the most typical thermodynamic quantities is temperature T itself.

Thus, the following question arises naturally:

Question Can the compression rate of the temperature equal to the

temperature itself ? Self-referential Question

We can answer this question affirmatively in the following form:
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Fixed Point Theorem on Compression Rate: Main Theorem

Theorem [fixed point theorem on compression rate, Tadaki, CiE 2008]

For every T ∈ (0,1), if Z(T ) is a computable real, then

lim
n→∞

H(T¹n)

n
= T,

i.e., the compression rate of T equals to T itself.

Intuitive Meaning; Metaphor

Consider a file of infinite size whose content is

“The compression rate of this file is 0.100111001 · · · · · ·”

When this file is compressed, the compression rate of this file actually equals

to 0.100111001 · · · · · · , as the content of this file says.

This situation forms a fixed point and is self-referential !
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Remark on the sufficient condition in the fixed Point Theorem

Theorem [fixed point theorem on compression rate] [posted again]

For every T ∈ (0,1), if Z(T ) is computable, then limn→∞ H(T¹n)/n = T .

Note that Z(T ) =
∑∞

i=1 2−|qi|/T is a strictly increasing continuous function

of T ∈ (0,1), and the set of all computable reals is dense in R. Thus,

Theorem The set {T ∈ (0,1) | Z(T ) is computable } is dense in (0,1).

Corollary [density of the fixed points]

The set {T ∈ (0,1) | limn→∞ H(T¹n)/n = T} is dense in (0,1).

At this point, the following question would arise naturally:

Question Is this sufficient condition, i.e., the computability of Z(T ),

also necessary for T to be a fixed point ?

Answer Completely not !! (as we can see through the following

argument)

31



Thermodynamic Quantities in AIT: Fixed Point Theorems

In the fixed point theorem, Z(T ) can be replaced by each of the thermody-
namic quantities F (T ), E(T ), and S(T ) as follows.

Theorem [fixed point theorem by the free energy F (T ), Tadaki, LFCS’09]

For every T ∈ (0,1), if F (T ) is computable, then

lim
n→∞

H(T¹n)

n
= T.

Theorem [fixed point theorem by the energy E(T ), Tadaki, LFCS’09]

For every T ∈ (0,1), if E(T ) is computable, then

lim
n→∞

H(T¹n)

n
= T.

Theorem [fixed point theorem by the entropy S(T ), Tadaki, LFCS’09]

For every T ∈ (0,1), if S(T ) is computable, then

lim
n→∞

H(T¹n)

n
= T.

These fixed point theorems have the exactly same form as one by Z(T ).
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Relation between the sufficient conditions of FPTs

Theorem [Tadaki, LFCS’09] There does not exist T ∈ (0,1) such that

both Z(T ) and F (T ) are computable.

Proof)

Contrarily, assume that both Z(T ) and F (T ) are computable for some T ∈
(0,1). Since the statistical mechanical relation F (T ) = −T log2 Z(T ) holds,

T = −
F (T )

log2 Z(T )
.

Thus, T is computable, and therefore the compression rate of Z(T ) equals

to T , i.e., limn→∞ H(Z(T )¹n)/n = T . This is positive since T > 0. On the

other hand, since Z(T ) is computable by the assumption, the compression

rate of Z(T ) equals to 0. Thus we have a contradiction.

{T ∈ (0,1) | Z(T ) is computable } ∩ {T ∈ (0,1) | F (T ) is computable } = ∅.
dense in (0,1) dense in (0,1)

In particular, this shows that the computability of Z(T ) is not a necessary

condition for T to be a fixed point in the fixed point theorem by Z(T ).
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Relation between the sufficient conditions of FPTs II

Theorem There does not exist T ∈ (0,1) such that all of Z(T ), E(T ),

and S(T ) are computable.

Proof) Use the statistical mechanical relation

S(T ) =
E(T )

T
+ log2 Z(T ).

Theorem There does not exist T ∈ (0,1) such that all of F (T ), E(T ),

and S(T ) are computable.

Proof) Use the thermodynamic relation

S(T ) =
E(T ) − F (T )

T
.
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Summary

Temperature = Compression Rate.
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Remark: Physical Implication of the Results

Definition Let q1, q2, q3, . . . . . . be an arbitrary enumeration of DomU .

In the statistical mechanical interpretation of AIT,
q1, q2, q3, . . . . . . correspond to energy eigenstates of a quantum system and
|q1| , |q2| , |q3| , . . . . . . correspond to energy eigenvalues of the quantum sys-
tem with degeneracy.

Theorem [distribution of programs (i.e., “energy eigenstates”), Solovay]

#{ p | p ∈ DomU & |p| ≤ n } = 2n−H(n)+O(1) for all n ∈ N.

(In statistical mechanics, this quantity is “the number of states below en-
ergy n”)

Here H(n) = H(the base-two representation of n).

If the energy eigenvalues of a quantum system distribute according to the
above distribution, then the following situation can realize:

If T is a computable real, the compression rate of the values of
thermodynamic quantities at temperature T equals to T

in the quantum system.
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Remark: Mathematical Implication of the Results

The proofs of the fixed point theorems on compression rate by F (T ), E(T ),
and S(T ) depend heavily on the following thermodynamic relations:

Lemma [thermodynamic relations] T ∈ (0,1).

(i) F ′
m(T ) = −Sm(T ), E′

m(T ) = Cm(T ), and S′
m(T ) = Cm(T )/T .

(ii) F ′(T ) = −S(T ), E′(T ) = C(T ), and S′(T ) = C(T )/T .

(iii) Sm(T ), Cm(T ) ≥ 0. Sm(T ), Cm(T ) > 0 for all sufficiently large k.
S(T ), C(T ) > 0.

Moreover, the proof of the following theorem depends on the statistical
mechanical relation F (T ) = −T log2 Z(T ).

Theorem There does not exist T ∈ (0,1) such that both Z(T ) and F (T )

are computable.

This theorem says that the computability of F (T ) gives completely different
fixed points from the computability of Z(T ).

These fact would imply that the analytic method can be used in the research
of AIT (algorithmic randomness).
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